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Preface

While still in high school, I learned that the tides act as a brake on the

Earth’s rotation, gradually slowing it down, and that the angular momen-

tum lost by the rotating Earth is transferred to the Moon, causing it to

slowly spiral outwards, away from Earth. I still vividly remember my puz-

zlement. How, by what mechanism or process, did angular momentum get

transferred from Earth to the Moon? Just so Newton’s contemporaries

must have wondered at his theory of gravity. Newton’s response is well

known:

I have not been able to discover the cause of those properties of
gravity from phænomena, and I frame no hypotheses. . . . to us
it is enough, that gravity does really exist, and act according
to the laws which we have explained, and abundantly serves to
account for all the motions of the celestial bodies, and of our
sea. [Newton (1729)]

In Newton’s theory, gravitational effects were simultaneous with their

causes. The time-delay between causes and effects in classical electrody-

namics and in Einstein’s theory of gravity made it seem possible for a while

to explain “how Nature does it.” One only had to transmogrify the al-

gorithms that served to calculate the effects of given causes into physical

processes by which causes produce their effects. This is how the electro-

magnetic field—a calculational tool—came to be thought of as a physical

entity in its own right, which is locally acted upon by charges, which locally

acts on charges, and which mediates the action of charges on charges by

locally acting on itself.

Today this sleight of hand no longer works. While classical states

are algorithms that assign trivial probabilities—either 0 or 1—to measure-

ment outcomes (which is why they can be re-interpreted as collections of

v
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possessed properties and described without reference to “measurement”),

quantum states are algorithms that assign probabilities between 0 and 1

(which is why they cannot be so described). And while the classical laws

correlate measurement outcomes deterministically (which is why they can

be interpreted in causal terms and thus as descriptive of physical processes),

the quantum-mechanical laws correlate measurement outcomes probabilisti-

cally (which is why they cannot be so interpreted). In at least one respect,

therefore, physics is back to where it was in Newton’s time—and this with

a vengeance. According to Dennis Dieks, Professor of the Foundations and

Philosophy of the Natural Sciences at Utrecht University and Editor of

Studies in History and Philosophy of Modern Physics,

the outcome of foundational work in the last couple of decades
has been that interpretations which try to accommodate classi-
cal intuitions are impossible, on the grounds that theories that
incorporate such intuitions necessarily lead to empirical pre-
dictions which are at variance with the quantum mechanical
predictions. [Dieks (1996)]

But, seriously, how could anyone have hoped to get away for good with

passing off computational tools—mathematical symbols or equations—as

physical entities or processes? Was it the hubristic desire to feel “potentially

omniscient”—capable in principle of knowing the furniture of the universe

and the laws by which this is governed?

If quantum mechanics is the fundamental theoretical framework of

physics—and while there are a few doubters [e.g., Penrose (2005)], no-

body has the slightest idea what an alternative framework consistent with

the empirical data might look like—then the quantum formalism not only

defies reification but also cannot be explained in terms of a “more fun-

damental” framework. We sometimes speak loosely of a theory as being

more fundamental than another but, strictly speaking, “fundamental” has

no comparative. This is another reason why we cannot hope to explain

“how Nature does it.” What remains possible is to explain “why Nature

does it.” When efficient causation fails, teleological explanation remains

viable.

The question that will be centrally pursued in this book is: what does

it take to have stable objects that “occupy space” while being composed of

objects that do not “occupy space”?1 And part of the answer at which we

shall arrive is: quantum mechanics.
1The existence of such objects is a well-established fact. According to the well-tested

theories of particle physics, which are collectively known as the Standard Model, the
objects that do not “occupy space” are the quarks and the leptons.
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As said, quantum states are algorithms that assign probabilities between

0 and 1. Think of them as computing machines: you enter (i) the actual

outcome(s) and time(s) of one or several measurements, as well as (ii) the

possible outcomes and the time of a subsequent measurement—and out pop

the probabilities of these outcomes. Even though the time dependence of a

quantum state is thus clearly a dependence on the times of measurements, it

is generally interpreted—even in textbooks that strive to remain metaphys-

ically uncommitted—as a dependence on “time itself,” and thus as the time

dependence of something that exists at every moment of time and evolves

from earlier to later times. Hence the mother of all quantum-theoretical

pseudo-questions: why does a quantum state have (or appear to have) two

modes of evolution—continuous and predictable between measurements,

discontinuous and unpredictable whenever a measurement is made?

The problem posed by the central role played by measurements in stan-

dard axiomatizations of quantum mechanics is known as the “measurement

problem.” Although the actual number of a quantum state’s modes of evo-

lution is zero, most attempts to solve the measurement problem aim at

reducing the number of modes from two to one. As an anonymous referee

once put it to me, “to solve this problem means to design an interpretation

in which measurement processes are not different in principle from ordinary

physical interactions.” The way I see it, to solve the measurement problem

means, on the contrary, to design an interpretation in which the central role

played by measurements is understood, rather than swept under the rug.

An approach that rejects the very notion of quantum state evolution

runs the risk of being dismissed as an ontologically sterile instrumental-

ism. Yet it is this notion, more than any other, that blocks our view of

the ontological implications of quantum mechanics. One of these impli-

cations is that the spatiotemporal differentiation of the physical world is

incomplete; it does not “go all the way down.” The notion that quantum

states evolve, on the other hand, implies that it does “go all the way down.”

This is not simply a case of one word against another, for the incomplete

spatiotemporal differentiation of the physical world follows from the man-

ner in which quantum mechanics assigns probabilities, which is testable,

whereas the complete spatiotemporal differentiation of the physical world

follows from an assumption about what is the case between measurements ,

and such an assumption is “not even wrong” in Wolfgang Pauli’s famous

phrase, inasmuch as it is neither verifiable nor falsifiable.

Understanding the central role played by measurements calls for a clear

distinction between what measures and what is measured, and this in turn
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calls for a precise definition of the frequently misused and much maligned

word “macroscopic.” Since it is the incomplete differentiation of the phys-

ical world that makes such a definition possible, the central role played

by measurements cannot be understood without dispelling the notion that

quantum states evolve.

For at least twenty-five centuries, theorists—from metaphysicians to

natural philosophers to physicists and philosophers of science—have tried

to model reality from the bottom up, starting with an ultimate multiplicity

and using concepts of composition and interaction as their basic explana-

tory tools. If the spatiotemporal differentiation of the physical world is

incomplete, then the attempt to understand the world from the bottom

up—whether on the basis of an intrinsically and completely differentiated

space or spacetime, out of locally instantiated physical properties, or by ag-

gregation, out of a multitude of individual substances—is doomed to failure.

What quantum mechanics is trying to tell us is that reality is structured

from the top down.

Having explained why interpretations that try to accommodate classical

intuitions are impossible, Dieks goes on to say:

However, this is a negative result that only provides us with a
starting-point for what really has to be done: something con-
ceptually new has to be found, different from what we are famil-
iar with. It is clear that this constructive task is a particularly
difficult one, in which huge barriers (partly of a psychological
nature) have to be overcome. [Dieks (1996)]

Something conceptually new has been found, and is presented in this book.

To make the presentation reasonably self-contained, and to make those

already familiar with the subject aware of metaphysical prejudices they

may have acquired in the process of studying it, the format is that of a

textbook. To make the presentation accessible to a wider audience—not

only students of physics and their teachers—the mathematical tools used

are introduced along the way, to the point that the theoretical concepts used

can be adequately grasped. In doing so, I tried to adhere to a principle that

has been dubbed “Einstein’s razor”: everything should be made as simple

as possible, but no simpler.

This textbook is based on a philosophically oriented course of con-

temporary physics I have been teaching for the last ten years at the Sri

Aurobindo International Centre of Education (SAICE) in Puducherry (for-

merly Pondicherry), India. This non-compulsory course is open to higher
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secondary (standards 10–12) and undergraduate students, including stu-

dents with negligible prior exposure to classical physics.2

The text is divided into three parts. After a short introduction to prob-

ability, Part 1 (“Overview”) follows two routes that lead to the Schrödinger

equation—the historical route and Feynman’s path-integral approach. On

the first route we stop once to gather the needed mathematical tools, and

on the second route we stop once for an introduction to the special theory

of relativity.

The first chapter of Part 2 (“A Closer Look”) derives the mathematical

formalism of quantum mechanics from the existence of “ordinary” objects—

stable objects that “occupy space” while being composed of objects that

do not “occupy space.” The next two chapters are concerned with what

happens if the objective fuzziness that “fluffs out” matter is ignored. (What

happens is that the quantum-mechanical correlation laws degenerate into

the dynamical laws of classical physics.) The remainder of Part 2 covers

a number of conceptually challenging experiments and theoretical results,

along with more conventional topics.

Part 3 (“Making Sense”) deals with the ontological implications of the

formalism of quantum mechanics. The penultimate chapter argues that

quantum mechanics—whose validity is required for the existence of “ordi-

nary” objects—in turn requires for its consistency the validity of both the

Standard Model and the general theory of relativity, at least as effective

theories. The final chapter hazards an answer to the question of why stable

objects that “occupy space” are composed of objects that do not “occupy

space.” It is followed by an appendix containing solutions or hints for some

of the problems provided in the text.

2I consider this a plus. In the first section of his brilliant Caltech lectures [Feynman
et al. (1963)], Richard Feynman raised a question of concern to every physics teacher:
“Should we teach the correct but unfamiliar law with its strange and difficult conceptual
ideas . . . ? Or should we first teach the simple . . . law, which is only approximate, but
does not involve such difficult ideas? The first is more exciting, more wonderful, and
more fun, but the second is easier to get at first, and is a first step to a real understanding
of the second idea.” With all due respect to one of the greatest physicists of the 20th
Century, I cannot bring myself to agree. How can the second approach be a step to a
real understanding of the correct law if “philosophically we are completely wrong with
the approximate law,” as Feynman himself emphasized in the immediately preceding
paragraph? To first teach laws that are completely wrong philosophically cannot but
impart a conceptual framework that eventually stands in the way of understanding the
correct laws. The damage done by imparting philosophically wrong ideas to young
students is not easily repaired.
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I wish to thank the SAICE for the opportunity to teach this exper-

imental course in “quantum philosophy” and my students—the “guinea

pigs”—for their valuable feedback.

Ulrich Mohrhoff

August 15, 2010
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Chapter 1

Probability:
Basic concepts and theorems

The mathematical formalism of quantum mechanics is a probability cal-

culus. The probability algorithms it places at our disposal—state vectors,

wave functions, density matrices, statistical operators—all serve the same

purpose, which is to calculate the probabilities of measurement outcomes.

That’s reason enough to begin by putting together what we already know

and what we need to know about probabilities.

1.1 The principle of indifference

Probability is a measure of likelihood ranging from 0 to 1. If an event has a

probability equal to 1, it is certain that it will happen; if it has a probability

equal to 0, it is certain that it will not happen; and if it has a probability

equal to 1/2, then it is as likely as not that it will happen.

Tossing a fair coin yields heads with probability 1/2. Casting a fair

die yields any given natural number between 1 and 6 with probability 1/6.

These are just two examples of the principle of indifference, which states:

If there are n mutually exclusive and jointly exhaustive possibilities (or

possible events), and if we have no reason to consider any one of them more

likely than any other, then each possibility should be assigned a probability

equal to 1/n.

Saying that events aremutually exclusive is the same as saying that at most

one of them happens. Saying that events are jointly exhaustive is the same

as saying that at least one of them happens.

3
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1.2 Subjective probabilities versus objective probabilities

There are two kinds of situations in which we may have no reason to consider

one possibility more likely than another. In situations of the first kind, there

are objective matters of fact that would make it certain, if we knew them,

that a particular event will happen, but we don’t know any of the relevant

matters of fact. The probabilities we assign in this case, or whenever we

know some but not all relevant facts, are in an obvious sense subjective.

They are ignorance probabilities. They have everything to do with our

(lack of) knowledge of relevant facts, but nothing with the existence of

relevant facts. Therefore they are also known as epistemic probabilities.

In situations of the second kind, there are no objective matters of fact

that would make it certain that a particular event will happen. There

may not even be objective matters of fact that would make it more likely

that one event will occur rather than another. There isn’t any relevant

fact that we are ignorant of. The probabilities we assign in this case are

neither subjective nor epistemic. They deserve to be considered objective.

Quantum-mechanical probabilities are essentially of this kind.

Until the advent of quantum mechanics, all probabilities were thought

to be subjective. This had two unfortunate consequences. The first is that

probabilities came to be thought of as something intrinsically subjective.

The second is that something that was not a probability at all—namely, a

relative frequency—came to be called an “objective probability.”

1.3 Relative frequencies

Relative frequencies are useful in that they allow us to measure the like-

lihood of possible events, at least approximately, provided that trials can

be repeated under conditions that are identical in all relevant respects. We

obviously cannot measure the likelihood of heads by tossing a single coin.

But since we can toss a coin any number of times, we can count the number

NH of heads and the number NT of tails obtained in N tosses and calculate

the fraction fH
N = NH/N of heads and the fraction fT

N = NT /N of tails.

And we can expect the difference |NH−NT | to increase significantly slower

than the sum N = NH +NT , so that

lim
N→∞

|NH −NT |
NH +NT

= lim
N→∞

|fH
N − fT

N | = 0 . (1.1)
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In other words, we can expect the relative frequencies fH
N and fT

N to tend

to the probabilities pH of heads and pT of tails, respectively:

pH = lim
N→∞

NH

N
, pT = lim

N→∞

NT

N
. (1.2)

1.4 Adding and multiplying probabilities

Suppose you roll a (six-sided) die. And suppose you win if you throw either

a 1 or a 6 (no matter which). Since there are six equiprobable outcomes,

two of which cause you to win, your chances of winning are 2/6. In this

example it is appropriate to add probabilities:

p(1 ∨ 6) = p(1) + p(6) =
1

6
+

1

6
=

1

3
. (1.3)

The symbol ∨ means “or.” The general rule is this:

Sum rule. Let W be a set of w mutually exclusive and jointly exhaustive

events (for instance, the possible outcomes of a measurement), and let U
be a subset of W containing a smaller number u of events: U ⊂ W , u < w.

The probability p(U) that one of the events e1, . . . , eu in U takes place (no

matter which) is the sum p1 + · · · + pu of the respective probabilities of

these events.

One nice thing about relative frequencies is that they make a rule such as

this virtually self-evident. To demonstrate this, let N be the total number

of trials—think coin tosses or measurements. Let Nk be the total number

of trials with outcome ek, and let N(U) be the total number of trials with

an outcome in U . As N tends to infinity, Nk/N tends to pk and N(U)/N
tends to p(U). But

N(U)

N
=
N1 + · · ·+Nu

N
=
N1

N
+ · · ·+ Nu

N
, (1.4)

and in the limit N →∞ this becomes

p(U) = p1 + · · ·+ pu . (1.5)

Suppose now that you roll two dice. And suppose that you win if your total

equals 12. Since there are now 6 × 6 equiprobable outcomes, only one of

which causes you to win, your chances of winning are 1/(6 × 6). In this

example it is appropriate to multiply probabilities:

p(6 ∧ 6) = p(6)× p(6) =
1

6
× 1

6
=

1

36
. (1.6)
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The symbol ∧ means “and.” Here is the general rule:

Product rule. The joint probability p(e1∧· · ·∧ev) of v independent events
e1, . . . , ev (that is, the probability with which all of them happen) is the

product of the probabilities p(e1), . . . , p(ev) of the individual events.

It must be stressed that the product rule only applies to independent events.

Saying that two events a, b are independent is the same as saying that the

probability of a is independent of whether or not b happens, and vice versa.

As an illustration of the product rule for two independent events, let

a1, . . . , aJ be mutually exclusive and jointly exhaustive events (think of the

possible outcomes of a measurement of a variable A), and let pa1 , . . . , p
a
J

be the corresponding probabilities. Let b1, . . . , bK be a second such set

of events with corresponding probabilities pb1, . . . , p
b
K . Now draw a 1 × 1

square with coordinates x, y ranging from 0 to 1. Partition it horizontally

into J strips of respective width paj . Partition it vertically into K strips

of respective width pbk. You now have a square partitioned into J × K

rectangles with respective areas paj × pbk. Since a joint measurement of A

and B is equivalent to throwing a dart in such a way that it hits a random

position (x, y) within the square, the joint probability p(aj ∧ bk) equals the
corresponding area.

Problem 1.1. We have seen that the probability of obtaining a total of 12

when rolling a pair of dice is 1/36. What is the probability of obtaining a

total of (a) 11, (b) 10, (c) 9?

Problem 1.2. (∗)1 In 1999, Sally Clark was convicted of murdering her

first two babies, which died in their sleep of sudden infant death syndrome.

She was sent to prison to serve two life sentences for murder, essentially on

the testimony of an “expert” who told the jury it was too improbable that two

children in one family would die of this rare syndrome, which has a proba-

bility of 1/8,500. After over three years in prison, and five years of fighting

in the legal system, Sally was cleared by a Court of Appeal, and another

two and a half years later, the “expert” pediatrician Sir Roy Meadow was

found guilty of serious professional misconduct. Amazingly, during the trial

nobody raise the objection that an expert pediatrician was not likely to be an

expert statistician. Meadow had argued that the probability of two sudden

infant deaths in the same family was (1/8, 500)×(1/8, 500) = 1/72, 250, 000.

Explain why he was so terribly wrong.

1A star indicates that a solution or a hint is provided in Appendix A.
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1.5 Conditional probabilities and correlations

If the events aj and bk are not independent, we must distinguish between

marginal probabilities , which are assigned to the possible outcomes of ei-

ther measurement without taking account of the outcome of the other mea-

surement, and conditional probabilities , which are assigned to the possible

outcomes of either measurement depending on the outcome of the other

measurement. If aj and bk are not independent, their joint probability is

p(aj ∧ bk) = p(bk|aj) p(aj) = p(aj |bk) p(bk) , (1.7)

where p(aj) and p(bk) are marginal probabilities, while p(bk|aj) is the prob-

ability of bk conditional on the outcome aj and p(aj |bk) is the probability

of aj conditional on the outcome bk. This gives us the useful relation

p(b|a) =
p(a ∧ b)
p(a)

. (1.8)

Another useful rule is

p(a) = p(a|b) p(b) + p(a|b) p(b) , (1.9)

where b and b are two mutually exclusive and jointly exhaustive events.

(To obtain b is to obtain any outcome other than b.) The validity of this

rule is again readily established with the help of relative frequencies. We

obviously have that

N(a)

N
=
N(a ∧ b)

N
+
N(a ∧ b)

N
=
N(a ∧ b)
N(b)

N(b)

N
+
N(a ∧ b)
N(b)

N(b)

N
, (1.10)

where N is the number of joint measurements of two variables, one with

the possible outcome a and one with the possible outcome b. In the limit

N → ∞, N(a)/N (the left-hand side of Eq. 1.10) tends to the marginal

probability p(a), while the right-hand side of this equation tends to the

right-hand side of Eq. (1.9), as will be obvious from a glance at Eq. (1.8).

An important concept is that of (probabilistic) correlation. Two events

a, b are correlated just in case that p(a|b) 6= p(a|b). Specifically, a and b are

positively correlated if p(a|b) > p(a|b), and they are negatively correlated if

p(a|b) < p(a|b). Saying that a and b are independent is thus the same as

saying that they are uncorrelated, in which case p(a|b) = p(a|b) = p(a).

Problem 1.3. (∗) Let’s Make a Deal was a famous game show hosted by

Monty Hall. In it a player was to open one of three doors. Behind one door

there was the Grand Prize (for example, a car). Behind the other doors
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there were booby prizes (say, goats). After the player had chosen a door,

the host opened a different door, revealing a goat, and offered the player the

opportunity of choosing the other closed door. Should the player accept the

offer or should he stick with his first choice? Does it make a difference?

Problem 1.4. (∗) Which of the following statements do you think is true?

(i) Event A happens more frequently because it is more likely. (ii) Event A

is more likely because it happens more frequently.

Problem 1.5. (∗) Suppose we have a 99% accurate test for a certain dis-

ease. And suppose that a person picked at random from the population tests

postive. What is the probability that this person actually has the disease?

1.6 Expectation value and standard deviation

Another two important concepts associated with a probability distribution

are the expected/expectation value (or mean) and the standard deviation

(or root mean square deviation from the mean).

The expected value associated with the measurement of an observable

with K possible outcomes vk and corresponding probabilities p(vk) is

〈v〉 Def
=

K∑

k=1

p(vk) vk . (1.11)

Note that the expected value doesn’t have to be one of the possible out-

comes. The expected value associated with the roll of a die, for instance,

equals 3.5.

To calculate the rms deviation from the mean, ∆v, we first calculate

the squared deviations from the mean, (vk − 〈v〉)2, then we calculate their

mean, and finally we take the root:

∆v =

√
√
√
√

K∑

k=1

p(vk)(vk − 〈v〉)2 . (1.12)

The standard deviation of a random variable V with possible values vk is an

important measure—albeit not the only one—of the variability or spread

of V .

Problem 1.6. (∗) Calculate the standard deviation for the sum obtained

by rolling two dice.
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Chapter 2

A (very) brief history
of the “old” theory

2.1 Planck

Quantum physics started out as a rather desperate measure to avoid some

of the spectacular failures of what we now call “classical physics.” The story

begins with the discovery by Max Planck, in 1900, of the law that perfectly

describes the radiation spectrum of a glowing hot object. (One of the things

predicted by classical physics was that you would get blinded by ultraviolet

light if you looked at the burner of your stove.) At first it was just a fit to the

data—“a fortuitous guess at an interpolation formula,” as Planck himself

described his radiation law. It was only weeks later that this formula was

found to imply the quantization of energy in the emission of electromagnetic

radiation, and thus to be irreconcilable with classical physics. According to

classical theory, a glowing hot object emits energy continuously. Planck’s

formula implies that it emits energy in discrete quantities proportional to

the frequency ν of the radiation:

E = hν , (2.1)

where h = 6.626069 × 10−34 Js is the Planck constant. Often it is more

convenient to use the reduced Planck constant ~ = h/2π (“h bar”), which

allows us to write

E = ~ω , (2.2)

where the angular frequency ω = 2πν replaces ν.

2.2 Rutherford

In 1911, Ernest Rutherford proposed a model of the atom that was based

on experiments conducted by Hans Geiger and Ernest Marsden. Geiger

9
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and Marsden had directed a beam of alpha particles (helium nuclei) at a

thin gold foil. As expected, most of the alpha particles were deflected by

at most a few degrees. Yet a tiny fraction of the particles were deflected

through angles much larger than 90 degrees. In Rutherford’s own words

[Cassidy et al. (2002)],

It was almost as incredible as if you fired a 15-inch shell at a
piece of tissue paper and it came back and hit you. On con-
sideration, I realized that this scattering backward must be the
result of a single collision, and when I made calculations I saw
that it was impossible to get anything of that order of magni-
tude unless you took a system in which the greater part of the
mass of the atom was concentrated in a minute nucleus.

The resulting model, which described the atom as a miniature solar system,

with electrons orbiting the nucleus the way planets orbit a star, was how-

ever short-lived. Classical electromagnetic theory predicts that an orbiting

electron will radiate away its energy and spiral into the nucleus in less than

a nanosecond. This was the worst quantitative failure in the history of

physics, under-predicting the lifetime of hydrogen by at least forty orders

of magnitude. (This figure is based on the experimentally established lower

bound on the proton’s lifetime.)

2.3 Bohr

In 1913, Niels Bohr postulated that the angular momentum L of an orbiting

atomic electron was quantized: its possible values are integral multiples of

the reduced Planck constant:

L = n~, n = 1, 2, 3 . . . . (2.3)

Observe that angular momentum and Planck’s constant are measured in

the same units.

Bohr’s postulate not only explained the stability of atoms but also ac-

counted for the by then well-established fact that atoms absorb and emit

electromagnetic radiation only at specific frequencies. What is more, it en-

abled Bohr to calculate with remarkable accuracy the spectrum of atomic

hydrogen—the particular frequencies at which it absorbs and emits light

(visible as well as infrared and ultraviolet).

Apart from his quantization postulate, Bohr’s reasoning at the time

remained completely classical. Let us assume with Bohr that the electron’s
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Fig. 2.1 Calculating the acceleration of an orbiting electron.

orbit is a circle of radius r. The electron’s speed is then given by v =

r dβ/dt, where dβ is the small angle traversed during a short time dt, while

the magnitude a of the electron’s acceleration is the magnitude dv of the

vector difference v2 − v1 divided by dt.1 This equals a = v dβ/dt, as we

gather from Fig. 2.1. Eliminating dβ/dt by using v = r dβ/dt, we arrive at

a = v2/r.

We want to calculate the electron’s total energy as it orbits the nucleus

(a proton). In Gaussian units, the magnitude of the Coulomb force exerted

on the electron by the proton takes the particularly simple form F = e2/r2,

where e is the absolute value of both the electron’s and the proton’s charge.

Since F = ma = mv2/r, we have that mv2 = e2/r. This gives us the

electron’s kinetic energy,

EK =
mev

2

2
=
e2

2r
, (2.4)

where me is the electron’s mass.

By convention, the electron’s potential energy is 0 at r =∞. Its poten-

tial energy at the distance r from the nucleus is therefore minus the work

done by moving it from r to infinity,

EP = −
∫ ∞

r

F dr = −
∫ ∞

r

e2

(r′)2
dr′ = −e

2

r
. (2.5)

(You will do the integral in the next chapter.) So the electron’s total energy

is E = EK +EP = −e2/2r.
Our next order of business is to express E as a function of L rather

than r. Classically, L = mevr. Equation (2.4) allows us to massage E into

1To be precise, this holds in the limit in which dt, and hence dβ and dv, go to 0. See
the next chapter for a brief introduction to vectors, differential quotients, and such.
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the desired form:

E = − mee
4

2m2
ev

2r2
= −mee

4

2L2
. (2.6)

At this point Bohr simply substitutes L = n~ for the classical expression

L = mevr:

En = − 1

n2

(
mee

4

2 ~2

)

, n = 1, 2, 3, . . . (2.7)

If n~ (n = 1, 2, 3, . . . ) are the only values that L can take, then these are

the only values that the electron’s energy can take. It follows at once that

a hydrogen atom can emit or absorb energy only by amounts equal to the

differences

∆Enm = En −Em =

(
1

m2
− 1

n2

)

Ry , (2.8)

where the Rydberg (Ry) is an energy unit equal to mee
4/2~

2 =

13.605691 eV. It is also the ionization energy ∆E∞1 of atomic hydrogen

in its ground state.

Considering the variety of wrong classical assumptions that went into

the derivation of Eq. (2.8), it is remarkable that the frequencies predicted by

Bohr via νnm = Enm/h were in excellent agreement with the experimentally

known frequencies at which atomic hydrogen emits and absorbs light.

2.4 de Broglie

In 1923, ten years after Bohr postulated that L comes in integral multi-

ples of ~, someone finally hit on an explanation why angular momentum

was quantized. In 1905, Albert Einstein had argued that electromagnetic

radiation itself was quantized—not merely its emission and absorption, as

Planck had held. Planck’s radiation formula had implied a relation between

a particle property and a wave property for the quanta of electromagnetic

radiation we now call photons : E = hν. Einstein’s explanation of the

photoelectric effect established another such relation:

p = h/λ , (2.9)

where p is the photon’s momentum and λ is its wavelength. But if elec-

tromagnetic waves have particle properties, Louis de Broglie reasoned, why

cannot electrons have wave properties?

Imagine that the electron in a hydrogen atom is a standing wave on

a circle (Fig. 2.2) rather than a corpuscle moving in a circle. (The crests,
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Fig. 2.2 Standing waves on a circle for n = 3, 4, 5, 6.

troughs, and nodes of a standing wave are stationary—they stay put.) Such

a wave has to satisfy the condition

2πr = nλ , n = 1, 2, 3, . . . , (2.10)

i.e., the circle’s circumference 2πr must be an integral multiple of λ. Using

p = h/λ to eliminate λ from Eq. (2.10) yields pr = n~. But pr = mvr

is just the angular momentum L of a classical electron moving in a circle

of radius r. In this way de Broglie arrived at the quantization condition

L = n~, which Bohr had simply postulated.
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Chapter 3

Mathematical interlude

3.1 Vectors

A vector is a quantity that has both a magnitude and a direction—for

present purposes a direction in “ordinary” 3-dimensional space. Such a

quantity can be represented by an arrow.

The sum of two vectors can be defined via the parallelogram rule:

(i) move the arrows (without changing their magnitudes or directions) so

that their tails coincide, (ii) duplicate the arrows, (iii) move the duplicates

(again without changing magnitudes or directions) so that (a) their tips co-

incide and (b) the four arrows form a parallelogram. The resultant vector

extends from the tails of the original arrows to the tips of their duplicates.

If we introduce a coordinate system with three mutually perpendicular

axes, we can characterize a vector a by its components (ax, ay, az) (Fig. 3.1).

Problem 3.1. (∗) The sum c = a + b of two vectors has the components

(cx, cy, cz) = (ax + bx, ay + by, az + bz).

The dot product of two vectors a,b is the number

a · b Def
= axbx + ayby + azbz . (3.1)

We need to check that this definition is independent of the (rectangular)

coordinate system to which the vector components on the right-hand side

refer. To this end we calculate

(a + b) · (a + b) = (ax + bx)2 + (ay + by)
2 + (az + bz)

2

= a2
x + a2

y + a2
z + b2x + b2y + b2z + 2 (axbx + ayby + azbz)

= a · a + b · b + 2 a · b . (3.2)

15
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Fig. 3.1 The components of a vector.

According to Pythagoras, the magnitude a of a vector a equals
√

a2
x + a2

y + a2
z . Because the left-hand side and the first two terms on the

right-hand side of Eq. (3.2) are the squared magnitudes of vectors, they do

not change under a coordinate transformation that preserves the magni-

tudes of all vectors. Hence the third term on the right-hand side does not

change under such a transformation, and neither therefore does the product

a · b. But the coordinate transformations that preserve the magnitudes of

vectors also preserve the angles between vectors. In particular, they turn

a system of rectangular coordinates into another system of rectangular co-

ordinates. Thus while the individual components on the right-hand side of

Eq. (3.2) generally change under such a transformation, the dot product

a · b does not.

By the term scalar we mean a number that is invariant under transfor-

mations of some kind or other. Since the dot product is invariant under

translations and rotations of the coordinate axes—the transformations that

preserve magnitudes and angles—it is also known as scalar product.

Problem 3.2. (∗) a · b = ab cos θ, where θ is the angle between a and b.

Another useful definition (albeit only in a 3-dimensional space) is the cross

product of two vectors. If x̂, ŷ, ẑ are unit vectors parallel to the coordinate
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Fig. 3.2 The area corresponding to a definite integral.

axes, this is given by

a× b
Def
= (aybz − azby) x̂ + (azbx − axbz) ŷ + (axby − aybx) ẑ . (3.3)

Problem 3.3. The cross product is antisymmetric: a× b = −b× a.

Problem 3.4. (∗) a× b is perpendicular to both a and b.

Problem 3.5. x̂× ŷ = ẑ , ŷ × ẑ = x̂ , ẑ× x̂ = ŷ .

By convention, the direction of a × b is given by the right-hand rule: if

the first (index) and the second (middle) finger of your right hand point in

the direction of a and b, respectively, then your right thumb (pointing in a

direction perpendicular to both a and b) indicates the direction of a× b .

Problem 3.6. (∗) The magnitude of a× b equals ab sin θ, the area of the

parallelogram spanned by a and b.

3.2 Definite integrals

We frequently have to deal with probabilities that are assigned to intervals

of a continuous variable x (like the interval [x1, x2] in Fig. 3.2). Such

probabilities are calculated with the help of a probability density function

ρ(x), which is defined so that the probability with which x is found to
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Fig. 3.3 Two approximations to the definite integral (3.4).

lie in the interval [x1, x2] is given by the shaded area in Fig. 3.2. The

mathematical tool for calculating this area is the (definite) integral

A =

∫ x2

x1

ρ(x) dx . (3.4)

To define this integral, we overlay the shaded area of Fig. 3.2 with N

rectangles of width ∆x = (x2 − x1)/N in either of the ways shown in

Fig. 3.3. The sum of the rectangles in the left half of this figure,

A+ =

N−1∑

k=0

ρ(x+ k∆x) ∆x , (3.5)

is larger than the wanted area A, while the sum of the rectangles in the

right half,

A− =

N∑

k=1

ρ(x+ k∆x) ∆x , (3.6)

is smaller. It is clear, though, that the differences A+−A and A−A− de-

crease as the number of rectangles increases. The integral (3.4) is defined

as the limit of either sum:

lim
N→∞

N∑

k=1

ρ(x+ k∆x) ∆x =

∫ x2

x1

ρ(x) dx = lim
N→∞

N−1∑

k=0

ρ(x+ k∆x) ∆x .

Another frequently used expression is the integral
∫ +∞
−∞ρ(x) dx, which is

defined as the limit

lim
a→∞

∫ +a

−a

ρ(x) dx . (3.7)
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One often has to integrate functions of more than one variable. Take

the integral
∫

R

f(x, y, z) d3r . (3.8)

R is a region of 3-space, and d3r = dx dy dz is the volume of an infinitely

small rectangular cuboid with sides dx, dy, dz. Instead of summing over

infinitely many infinitely small intervals lying inside a finite interval, one

now sums over infinitely many infinitely small rectangular cuboids lying

inside a finite region R. (For more on infinitely many infinitely small things

see the next section.)

3.3 Derivatives

A function f(x) is a machine that has an input and an output. Insert

a number x and out pops the number f(x). [Warning : sometimes f(x)

denotes the machine itself rather than the number obtained after inserting

a particular x.] We shall mostly be dealing with functions that are well-

behaved. Saying that a function f(x) is well-behaved is the same as saying

that we can draw its graph without lifting up the pencil, and we can do the

same with the graphs of its derivatives.

The (first) derivative of f(x) is a machine f ′(x) that works like this:

insert a number x, and out pops the slope of (the graph of) f(x) at x.

What we mean by the slope of f(x) at a particular point x = a is the slope

of the tangent t(x) on f(x) at a.

Take a look at Fig. 3.4. The curve in each of the three diagrams is (the

graph of) f(x). The slope of the straight line s(x) that intersects f(x) at

two points in the upper diagrams is given by the difference quotient

∆s

∆x
=
s(x+ ∆x)− s(x)

∆x
. (3.9)

This tells us how much s(x) increases as x increases by ∆x. The lower

diagram shows the tangent t(x) on the function f(x) for a particular x.

Now consider the small black disk at the intersection of the functions

f(x) and s(x) at x+∆x in the upper left diagram. Think of it as a bead

sliding along f(x) towards the left. As it does so, the slope of s(x) increases

(compare the upper two diagrams). In the limit in which this bead occupies

the same place as the bead sitting at x, s(x) coincides with t(x), as one

gleans from the lower diagram. In other words, as ∆x tends to 0, the
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Fig. 3.4 Definition of the slope of a function f(x) at x.

difference quotient (3.9) tends to the differential quotient

df

dx

Def
= lim

∆x→0

∆f

∆x
, (3.10)

which is the same as f ′(x). The differentials dx and df are infinitesimal

(“infinitely small”) quantities. This sounds highly mysterious until one

realizes that every expression containing such quantities is to be understood

as the limit in which these tend to 0, one (here, dx) independently, the

others (here, df) dependently.

To differentiate a function f(x) is to obtain its first derivative f ′(x).
By differentiating f ′(x), we obtain the second derivative f ′′(x) of f(x),

for which we can also write d 2f/dx2. To make sense of the last expression,

think of d/dx as an operator. Like a function, an operator has an input and

an output, but unlike a function, it accepts a function as input. Insert f(x)

into d/dx and get the function df/dx. Insert the output of d/dx into another

operator d/dx and get the function (d/dx)(d/dx)f(x)
Def
= (d2/dx2)f(x) =

d 2f/dx2.

By differentiating the second derivative we obtain the third, and so on.
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Fig. 3.5 Illustration of the product rule.

Problem 3.7. Find the slope of the straight line f(x) = ax+ b .

Problem 3.8. (∗) Calculate f ′(x) for f(x) = 2x2 − 3x+ 4 .

Problem 3.9. (∗) What does f ′′(x)—the slope of the slope of f(x)—tell

us about the graph of f(x)?

By definition, (f + g)(x) = f(x) + g(x) .

Problem 3.10. If a is a number and f and g are functions of x, then

d(af)

dx
= a

df

dx
and

d(f + g)

dx
=
df

dx
+
dg

dx
.

A slightly more difficult task is to differentiate the product h(x) =

f(x) g(x). Think of f and g as the vertical and horizontal sides of a rectan-

gle of area h. As x increases by ∆x, the product fg increases by the sum

of the areas of the three white rectangles in Fig. 3.5:

∆h = f(∆g) + (∆f)g + (∆f)(∆g) . (3.11)

Hence

∆h

∆x
= f

∆g

∆x
+

∆f

∆x
g +

∆f ∆g

∆x
. (3.12)

If we now let ∆x go to 0, the first two terms on the right-hand side tend

to f g′ + f ′ g. What about the third term? Since it is the product of an

expression (either ∆g/∆x or ∆f/∆x) that tends to a finite number and an

expression (either ∆f or ∆g) that tends to 0, it tends to 0. The bottom

line:

h′ = (f g)′ = f g′ + f ′ g . (3.13)

Problem 3.11. (∗) (f g h)′ = f g h′ + f g′ h+ f ′ g h .
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The generalization to products of n functions is straightforward. An im-

portant special case is the product of n identical functions:

(fn)′ = fn−1 f ′ + fn−2 f ′ f + · · ·+ f ′ fn−1 = n fn−1f ′ . (3.14)

If f(x) = x, this boils down to

(xn)′ = nxn−1. (3.15)

Suppose now that g is a function of f , and that f is a function of x. An

increase in x by ∆x will cause an increase in f by ∆f ≈ (df/dx)∆x, and

this will cause an increase in g by ∆g ≈ (dg/df)∆f (the symbol ≈ means

“is approximately equal to”). Thus

∆g

∆x
≈ dg

df

df

dx
. (3.16)

In the limit ∆x → 0, “approximately equal” becomes “equal,” and Eq.

(3.16) becomes the chain rule

dg

dx
=
dg

df

df

dx
. (3.17)

Problem 3.12. We have proved Eq. (3.15) for integers n ≥ 2. Check that

it also holds for n = 0 and n = 1.

Problem 3.13. (∗) Equation (3.15) also holds for negative integers n.

Problem 3.14. (∗) Equation (3.15) also holds for n = 1/m, where m is a

natural number.

Problem 3.15. Use the chain rule (3.17) to show that if Eq. (3.15) holds

for n = a and n = b, then it also holds for n = ab.

It follows from what you have just shown that Eq. (3.15) holds for all

rational numbers n. Moreover, since every real number is the limit of a

sequence of rational numbers, we can make sure that Eq. (3.15) holds for

all real numbers, by defining it as the limit of some sequence in case n is an

irrational number.

We often use functions with more than one input slot. The output of

f(t, x, y, z), for example, depends on the time coordinate t as well as the

spatial coordinates x, y, z. If we choose a fixed set of values x, y, z, we

obtain a function fxyz(t) of t alone. The partial derivative of f(t, x, y, z)

with respect to t is the derivative of fxyz(t), for which we write ∂f/∂t

(usually without explicitly indicating that this function depends on the

chosen set of values x, y, z). The partial derivatives of f(t, x, y, z) with

respect to the other variables are defined analogously.
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3.4 Taylor series

A well-behaved function can be expanded into a power series. This means

that for all non-negative integers k = 0, 1, 2, . . . there are real numbers ak

such that

f(x) =

∞∑

k=0

ak x
k = a0 + a1 x+ a2 x

2 + a3 x
3 + a4 x

4 + · · · . (3.18)

Let’s calculate the first four derivatives using (3.15):

f ′(x) = a1 + 2 a2x+ 3 a3 x
2 + 4 a4 x

3 + 5 a5 x
4 + · · · ,

f ′′(x) = 2 a2 + 2 · 3 a3 x+ 3 · 4 a4 x
2 + 4 · 5 a5 x

3 + · · · ,
f ′′′(x) = 2 · 3 a3 + 2 · 3 · 4 a4 x+ 3 · 4 · 5 a5 x

2 + · · · ,
f ′′′′(x) = 2 · 3 · 4 a4 + 2 · 3 · 4 · 5 a5 x+ · · · .

Setting x equal to zero, we obtain the following values:

f(0) = a0 , f ′(0) = a1 , f ′′(0) = 2 a2 ,

f ′′′(0) = 2× 3 a3 , f ′′′′(0) = 2× 3× 4 a4 .

Since we don’t want to go on adding primes (′), we will write f (n)(x) for

the n-th derivative of f(x). If we also write f (0)(x) for f(x), we have

that f (k)(0) equals k! ak, where the factorial k! is defined as equal to 1 for

k = 0 and k = 1, and as the product of all natural numbers n ≤ k for

k > 1. Expressing the coefficients ak in terms of the derivatives of f(x) for

x = 0, we arrive at the following power series—also known as the Taylor

series—for f(x):

f(x) =

∞∑

k=0

f (k)(0)

k!
xk. (3.19)

A remarkable result: if you know the value of a well-behaved function f(x)

and the values of all of its derivatives for a single value of x (in this case

x = 0, but there is a similar series for any value of x), then you know f(x)

for all values of x.

3.5 Exponential function

We define the function exp(x) by requiring that exp′(x) = exp(x) and

exp(0) = 1. In other words, the value of this function is everywhere equal

to the slope of its graph, which intersects the vertical axis at the value 1.
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Problem 3.16. Sketch the graph of exp(x) using this information alone.

Problem 3.17. All derivatives of exp(x) are equal to exp(x).

Thus exp(k)(0) = 1 for all k, whence a particularly simple Taylor series

results:

exp(x) =

∞∑

k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · . (3.20)

Problem 3.18. (∗) exp(x) satisfies

f(a) f(b) = f(a+ b) . (3.21)

It can be shown that every function satisfying Eq. (3.21) has the form

f(x) = ax. This means that there is a number e such that exp(x) = ex—

hence the name “exponential function.”

Problem 3.19. (∗) Calculate e.

Problem 3.20. d(eax)/dx = a eax.

The natural logarithm lnx is the inverse of ex, that is, e ln x = ln(ex) = x .

Problem 3.21. ln a+ ln b = ln(ab).

Problem 3.22. (∗)
d ln f(x)

dx
=

1

f(x)

df

dx
. (3.22)

3.6 Sine and cosine

We define the function cos(x) by requiring that cos′′(x) = − cos(x),

cos(0) = 1, and cos′(0) = 0.

Problem 3.23. (∗) Sketch the graph of cos(x), making use of this infor-

mation alone.

Problem 3.24. For n ≥ 0: cos(n+2)(x) = − cos(n)(x).

Problem 3.25.

cos(k)(0) =







+1 for k = 0, 4, 8, 12, . . .

−1 for k = 2, 6, 10, 14, . . .

0 for odd k
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We thus arrive at the following Taylor series:

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · . (3.23)

The function sin(x) is defined by requiring that sin′′(x) = − sin(x), sin(0) =

0, and sin′(0) = 1. This leads to the Taylor series

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · . (3.24)

3.7 Integrals

In Sec. 3.2 we defined the definite integral as a limit. How do we calculate

this limit? The answer is elementary if we know a function F (x) of which

f(x) is the first derivative, f = dF/dx, for we can then substitute dF for

f dx:

∫ b

a

f(x) dx =

∫ b

a

dF (x) . (3.25)

On the face of it, we are still adding infinitely many infinitely small quan-

tities, but look what this amounts to:

∫ b

a

dF (x) = [F (a+ dx)− F (a)]

+ [F (a+ 2 dx)− F (a+ dx)]

+ [F (a+ 3 dx)− F (a+ 2 dx)]

+ · · ·
+ [F (b− 2 dx)− F (b− 3 dx)]

+ [F (b− dx)− F (b− 2 dx)]

+ [F (b)− F (b− dx)] .

After all cancellations are done, we are left with
∫ b

a
dF (x) = F (b)− F (a).

If f(x) is the derivative of F (x), F (x) is known as an integral or anti-

derivative of f(x)—an integral rather than the integral because if F (x) is

an integral of f(x) and c is a constant, then F (x) + c is another integral

of f(x). To distinguish integrals from definite integrals, we also refer to

them as indefinite integrals.

Problem 3.26. (∗) Calculate
∫ 2

1
x2 dx.
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Problem 3.27. (∗)
∫ ∞

r

1

(r′)2
dr′ =

1

r
.

If we don’t know an antiderivative of f(x), calculating the integral
∫ b

a dx f(x) is much harder. Let’s do the Gaussian integral,

I =

∫ +∞

−∞
dx e−x2/2, (3.26)

as a case in point. For this integral someone has discovered the follow-

ing trick. (The trouble is that different integrals usually require different

tricks.) Start with the square of I :

I2 =

∫ +∞

−∞
dx e−x2/2

∫ +∞

−∞
dy e−y2/2 =

∫ +∞

−∞

∫ +∞

−∞
dx dy e−(x2+y2)/2.

This is an integral over the x–y plane. We are again adding infinitely

many infinitely small quantities, in this case rectangles of area dx dy, each

multiplied by the value that the integrand e−(x2+y2)/2 takes somewhere

inside it.

Now let’s reduce this double integral to a single one by switching to

polar coordinates.1 For x2 + y2 we substitute r2, and instead of summing

contributions from infinitesimal rectangles we sum contributions from in-

finitesimal annuli of area 2π r dr.2 Finally, to cover the entire plane, we let

r range from 0 to ∞:

I2 = 2π

∫ +∞

0

dr r e−r2/2.

Now we use d r2/dr = 2r to replace dr r by d(r2/2), and we substitute a

new integration variable w for r2/2:

I2 = 2π

∫ +∞

0

d
(
r2/2

)
e−r2/2 = 2π

∫ +∞

0

dw e−w.

We are almost done, since the antiderivative of e−w is known. It is −e−w.

Hence
∫ +∞

0

dw e−w = (−e−∞)− (−e0) = 0 + 1 = 1 .

1For the definition of polar coordinates in three dimensions, see Fig. 11.2.
2The area of an annulus with inner and outer radii r and r+dr is given by π(r+dr)2−
πr2 = 2π r dr + π dr2. But since the limit dr → 0 is implied, all but the lowest order of
dr can be ignored. (Recall our derivation of the product rule 3.13.)
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So I2 = 2π and

I =

∫ +∞

−∞
dx e−x2/2 =

√
2π . (3.27)

Believe it or not, a significant fraction of the literature in theoretical physics

concerns variations and elaborations of this integral.

One such variation can be obtained by substituting
√
ax for x:

∫ +∞

−∞
dx e−ax2/2 =

√

2π

a
. (3.28)

Another variation can be obtained by treating both sides of this equation

as functions of a and differentiating them with respect to a. The result is
∫ +∞

−∞
dx e−ax2/2x2 =

√

2π

a3
. (3.29)

Problem 3.28. Prove the last two equations.

One method that sometimes helps evaluating an integral is known as inte-

gration by parts. Integrating the product rule (3.13) yields
∫ b

a

dx(fg)′ =

∫ b

a

dxfg′ +

∫ b

a

dxf ′g . (3.30)

This allows us to write
∫ b

a

dxfg′ = (fg)(b)− (fg)(a)−
∫ b

a

dxf ′g . (3.31)

3.8 Complex numbers

“God created the natural numbers, all the rest is the work of man,” the

mathematician Leopold Kronecker is reported to have said. By subtracting

natural numbers from natural numbers, we can create integers that are not

natural numbers. By dividing integers by integers we can create rational

numbers that are not integers. By taking the limits of sequences of rational

numbers—or by doing something more specific, like taking the square roots

of positive integers—we can create real numbers that are not rational. And

by taking the roots of polynomials we can create complex numbers that are

not real.

A polynomial p(x) is like a power series except that it only contains a

finite number of terms. The roots of a polynomial p(x) are the values of

x for which p(x) = 0. Take the polynomial p(x) = 1 + x2. What are its
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roots? You might be tempted to say that they do not exist. If so, what

stops us from inventing them? It’s as easy as saying: “Let i be equal to

the positive square root of −1 !” All you can say is that the roots +i and

−i of p(x) are not real numbers. They are imaginary numbers.

Do not be misled by the conventional labels “real” and “imaginary.”

No number is real in the sense in which, say, apples are real. Both real

numbers and complex numbers are creations of the human mind. The

real numbers are no less imaginary (in the ordinary sense of “imaginary”)

than the imaginary numbers. All you can say is that you have been using

natural numbers (for counting), rational numbers (for accounting), and real

numbers (for measuring), whereas you haven’t yet found a use for complex

numbers. But this is going to change. Quantum mechanics requires the use

of complex numbers.

An imaginary number is a real number multiplied by i = +

√
−1. Every

complex number z is the sum of a real number a (the real part of z) and

an imaginary number ib. Somewhat confusingly, the imaginary part of z is

the real number b.

Because real numbers may be visualized as points in a line, the set of

real numbers is sometimes called the real line. Because complex numbers

may be visualized as points in a plane, the set of complex numbers is

often referred to as the complex plane. This plane contains two axes, one

horizontal (the real axis containing the real numbers) and one vertical (the

imaginary axis containing the imaginary numbers).

Figure 3.6 illustrates the addition of two complex numbers:

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) . (3.32)

We often think of complex numbers as arrows which, like the vectors we

considered in Sec. 3.1, have a magnitude and a direction, but no particular

location. It is readily seen that adding two complex numbers, considered

as arrows, works just like adding vectors in a plane.

To be able to multiply complex numbers, all you need to know is that

i2 = −1:

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + b1a2) . (3.33)

A useful definition is the complex conjugate z∗ = a − ib of z = a + ib.

Among other things, it allows us to write z∗z for the square of the absolute

value |z| of z—the absolute square |z|2, for short.

Problem 3.29. zz∗ = a2 + b2.
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Fig. 3.6 Adding complex numbers.

There is an easier way of multiplying complex numbers. To see how it

works, let us first redefine the exponential function in terms of its Taylor

series. This allows us to write down the Taylor series for eix:

∞∑

k=0

(ix)k

k!
= 1 + ix+

(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+ · · · .

Problem 3.30. i3 = −i and i4 = 1.

Problem 3.31. (∗) The real and imaginary parts of eiα are cosα and sinα,

respectively.

The result is Euler’s formula:

eiα = cosα+ i sinα . (3.34)

What is the magnitude of eiα? Its absolute square works out at

eiα(eiα)∗ = (cosα+ i sinα)(cosα− i sinα) = cos2 α+ sin2 α .

Remembering the trigonometric relation cos2 α + sin2 α = 1, you may be

tempted to conclude that |eiα| = 1. But we haven’t yet shown that the func-

tions cos(x) and sin(x) defined in Sec. 3.6 are the same as their trigono-

metric namesakes! To do so, we observe that changing the sign of α in
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Eq. (3.34) has the same effect as changing the sign of the imaginary part

of eiα. This tells us that

|eiα|2 = eiα(eiα)∗ = eiα e−iα = e0 = 1 .

Now we can conclude that the magnitude of eiα is 1, and we can infer from

the geometry of the complex plane that the real and imaginary parts of

eiα—the functions defined in Sec. 3.6—are the same as the familiar trigono-

metric functions cosα and sinα, respectively—provided that α is measured

in radians.3

Every complex number can thus be written in the form z = reiα, where

r is its absolute value and α is its phase, and this is what makes multiplying

complex numbers a piece of cake:

(z1) (z2) = r1e
iα1 r2e

iα2 = (r1r2) e
i(α1+α2). (3.35)

Just multiply the absolute values and add the phases.

Complex numbers of the form eix are known as phase factors. If you

want to increase the phase of a complex number z by β, just multiply z

by eiβ .

Problem 3.32. (∗) Find the real and imaginary parts of eiπ/4.

Problem 3.33. (∗) Find all roots of x2 − i = 0 and x3 + 1 = 0.

Problem 3.34.

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
.

Problem 3.35. (∗) Arguably the five most important numbers in mathe-

matics are 0, 1, i, π, and e. Write down a correct equation that contains

each of them just once.

3Measured in radians, the angle subtended at the center of a circle of radius 1 by an
arc of length L equals L. 360◦ thus corresponds to 2π.
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Chapter 4

A (very) brief history
of the “new” theory

4.1 Schrödinger

If the electron is a standing wave, why should it be confined to a circle?

After the insight that particles can behave like waves, which de Broglie

gained ten years after Bohr postulated the quantization of angular momen-

tum, it took less than three years for the mature (“new”) quantum theory

to be formulated, not once but twice in different mathematical attire, by

Werner Heisenberg in 1925 and by Erwin Schrödinger in 1926.

If we imagine the electron as a standing wave in three dimensions, we

have almost all it takes to arrive at the equation that is at the heart of the

new theory. To keep things simple, let us however start with one spatial di-

mension. The simplest mathematical description of a wave of amplitude A,

wavenumber k = 2π/λ, and angular frequency ω = 2π/T = 2πν is the

function (Fig. 4.1)

ψ(x, t) = Aei(kx−ωt). (4.1)

Expressing the phase φ(x, t) = kx − ωt in terms of the electron’s energy

E = ~ω (Eq. 2.2) and momentum p = h/λ = ~k (Eq. 2.9),

ψ(x, t) = Aei(px−Et)/~, (4.2)

and taking the first partial derivative with respect to t and the second

partial derivative with respect to x, we obtain

∂ψ

∂t
= − i

~
Eψ ,

∂2ψ

∂x2
= − 1

~2
p2 ψ . (4.3)

In the classical and non-relativistic theory, the energy E and the momen-

tum p of a freely moving particle are related via E = p2/2m. (This can

be made to look more familiar by substituting mv for p. We shall discover

31
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Fig. 4.1 The slanted lines represent the alternating crests and troughs of ψ(x, t). The
passing of time is indicated by the upward-moving dotted line, which stands for the
temporal present. As time passes, the crests and troughs move toward the right. By
focusing on a fixed time one can see that a cycle (crest to crest, say) completes after
a distance λ. By focusing on a fixed place, one can see that a cycle completes after a
time T .

the origin of this relation in Sec. 9.3.) In the presence of a potential energy

EP (t, x), the electron’s total energy is

E =
p2

2m
+ EP .

Multiplying this equation with ψ,

Eψ =
p2

2m
ψ +EP ψ ,

and using Eqs. (4.3) to substitute i~ (∂ψ/∂t) for Eψ and −~
2(∂2ψ/∂x2) for

p2 ψ, we arrive at the 1-dimensional Schrödinger equation,

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
+EP ψ . (4.4)
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The generalization to three dimensions is straightforward:

i~
∂ψ

∂t
= − ~

2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)

+EP ψ . (4.5)

Let us however stick to the 1-dimensional case.

Problem 4.1. If f(x, t) and g(x, t) are functions that satisfy Eq. (4.4),

then Eq. (4.4) is also satisfied by the function h = af + b g, where a and b

are complex constants.

Our derivation of Eq. (4.4) ensures that its free version (EP = 0) is satisfied

by any function of the form (4.2) for which E = p2/2m. The general solution

of the free Schrödinger equation is therefore1

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ̃(k) ei[kx−ω(k)t] dk , (4.6)

where ψ̃(k) is the (complex) wave amplitude associated with

ψk(x, t)
Def
=

1√
2π

ei[kx−ω(k)t], (4.7)

and ω(k) = ~k2/2m . If we now define

ψ(k, t)
Def
= ψ̃(k) e−iω(k)t, (4.8)

we have that

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ(k, t) eikxdk , (4.9)

and this tells us that ψ(x, t) is the Fourier transform of ψ(k, t). As a

consequence, we also have that

ψ(k, t) =
1√
2π

∫ +∞

−∞
ψ(x, t) e−ikxdx . (4.10)

4.2 Born

Now here’s the one million dollar question: what does the Schrödinger

equation have to do with the real world? What do its solutions tell us

about the physical systems with which they are associated?

In the same year that Schrödinger published the equation that now bears

his name, the non-relativistic theory was completed by Max Born’s insight

1You will learn the reason for including the factor 1/
√

2π by doing Problem 11.2.
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that the “wave function” ψ(x, y, z, t) is a tool for calculating probabilities of

measurement outcomes. Specifically, if ψ is associated with a particle, its

absolute square |ψ(x, y, z, t)|2 is a (time-dependent) probability density, in

the sense that the probability of detecting the particle in a region R, by a

measurement made at the time t, is given by

p(R, t) =

∫

R

|ψ(x, y, z, t)|2 d3r . (4.11)

Since the probability of finding the particle somewhere (no matter where)

has to be equal to unity, a meaningful solution of the Schrödinger equation

must be square-integrable: the integral of its absolute value over any interval

or region must stay finite in the limit that the length of the interval or the

volume of the region tends to infinity.

For a continuous variable x with a normalized probability density ρ(x),2

the expected value (1.11) and the standard deviation (1.12) take the respec-

tive forms

〈x〉 =

∫ +∞

−∞
ρ(x)x dx , (4.12)

∆x =

√
∫ +∞

−∞
ρ(x)(x − 〈x〉)2 dx . (4.13)

Thus if ψ(x, t) is a solution of the 1-dimensional Schrödinger equation, then

〈x(t)〉 =

∫ +∞

−∞
|ψ(x, t)|2 x dx (4.14)

is the expected value associated with a position measurement made at the

time t, and

∆x(t) =

√
∫ +∞

−∞
|ψ(x, t)|2

(
x− 〈x(t)〉

)2
dx (4.15)

is the corresponding standard deviation. By the same token,3

〈p(t)〉 = ~ 〈k(t)〉 = ~

∫ +∞

−∞
|ψ(k, t)|2 k dk (4.16)

is the expected value associated with a momentum measurement made at

the time t, and

∆p(t) = ~ ∆k(t) = ~

√
∫ +∞

−∞
|ψ(k, t)|2

(
k − 〈k(t)〉

)2
dk (4.17)

is the corresponding standard deviation.

2“Normalized” here means that
∫+∞

−∞
ρ dx = 1.

3The following statements are corroborated in Secs. 11.3 and 11.6.
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4.3 Heisenberg and “uncertainty”

Because ψ(x, t) and ψ(k, t) are Fourier transforms of each other, the stan-

dard deviations ∆x and ∆k are constrained by the inequality ∆x∆k ≥ 1/2.

It follows that

∆x∆p ≥ ~

2
. (4.18)

This “uncertainty relation,” as it is generally called in the English speaking

world, was first derived by Werner Heisenberg, also in 1926. It is essential

to our understanding of why the laws of quantum mechanics have the form

that they do.

Bohr, as you will remember, postulated the quantization of angular mo-

mentum in an effort to explain the stability of atoms. An atom “occupies”

hugely more space than its nucleus (which is tiny by comparison) or any

one of its electrons (which do not appear to “occupy” any space at all).

How then does an atom come to “occupy” as much space as it does with-

out collapsing? The answer is: because of the “uncertainties” in both the

positions and the momenta of its electrons relative to its nucleus. It is these

“uncertainties” that “fluff out” matter.

Except that “uncertainty” cannot then be the right word. What “fluffs

out” matter cannot be our very own, subjective uncertainty about the

values of the relative positions and momenta of its constituents. It has to

be an objective fuzziness of these values.

Consider again the lowly hydrogen atom. It seems clear enough that

the fuzziness of the electron’s position relative to the proton can be at least

partly responsible for the amount of space that the atom “occupies.” (For

a hydrogen atom in its ground state, this is a space roughly one tenth of a

nanometer across.) But being fuzzy is not enough. This position must also

stay fuzzy, and that is where the fuzziness of the corresponding momentum

comes in.

The standard deviation ∆r associated with the radial component r of

the electron’s position relative to the nucleus is a measure of the fuzziness

of r. If the electrostatic attraction between the electron and the proton were

the only force at work, it would cause a decrease in ∆r, and the atom would

collapse as a result. The stability of the atom requires that the electrostatic

attraction be counterbalanced by an effective repulsion. In view of the fact

that we already have a fuzzy relative position, the absolutely simplest way

of obtaining such a repulsion—and a darn elegant way at that—is to let

the corresponding relative momentum be fuzzy, too. As Fig. 4.2 illustrates,
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Fig. 4.2 A fuzzy position, represented by a probability density function, at two different
times. Above: if an object with this position has an exact momentum, it moves by an
exact distance; the fuzziness of its position therefore does not increase. Below: if the
same object has a fuzzy momentum, it moves by a fuzzy distance; as a result, its position
grows fuzzier.

a fuzzy momentum causes a fuzzy position to grow more fuzzy. If the

electrostatic attraction were absent, the fuzziness of the momentum would

causes an increase in ∆r. In its presence, equilibrium is possible.

But if a stable equilibrium is to be maintained, more is needed. If

the mean distance between the two particles decreases, their electrostatic

attraction increases. A stable equilibrium is possible only if the effective

repulsion increases at the same time. We therefore expect a decrease in

∆r to be accompanied by an increase in ∆p, the fuzziness of the radial

component of the momentum, and we expect an increase in ∆r to be ac-

companied by a decrease in ∆p. We therefore expect the product ∆r∆p to

have a positive lower limit. The atom’s stability implies a relation of the

form (4.18).

Let us work out the speeds at which fuzzy positions get fuzzier when

left to themselves. To this end we consider an object associated with the

Gaussian wave function
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ψ(x, 0) =
1

√

σ
√
π
e−x2/2σ2

. (4.19)

The factor in front of the exponential ensures that the probability density

|ψ(x, 0)|2 =
1

σ
√
π
e−x2/σ2

(4.20)

is normalized. The standard deviation of |ψ(x, 0)|2 works out at

∆x(0) = σ/
√

2 . (4.21)

To find out how this grows with time, we calculate the Fourier transform

of ψ(x, 0) using Eq. (4.10). The result is

ψ(k, 0) =

√
σ√
π
e−σ2k2/2.

This defines the normalized probability density

|ψ(k, 0)|2 =
σ√
π
e−σ2k2

with standard deviation ∆k(0) = 1/σ
√

2 . Observe that the initial uncer-

tainties associated with the object’s position and momentum satisfy the

lower bound of the inequality (4.18): ∆x(0) ∆p(0) = ~/2.

The final step is to calculate the Fourier transform of ψ(k, t) with

the help of Eq. (4.9), having gathered from Eq. (4.8) that ψ(k, t) =

ψ(k, 0) e−iω(k)t. The result defines a probability density with standard de-

viation

∆x(t) =

√

σ2

2
+

~2t2

2m2σ2
. (4.22)

Equation (4.21) allows us to cast this into the final form

∆x(t) =

√

[∆x(0)]2 +
~2t2

4m2[∆x(0)]2
. (4.23)

Two factors thus impact the speed with which the fuzziness ∆x of our ob-

ject’s position spreads: the initial fuzziness ∆x(0) and the object’s mass m.

The smaller they are, the faster ∆x grows. Suppose, for example, that

∆x(0) is a tenth of a nanometer (a typical size for an atom). If m is the

mass of an electron, ∆x will grow at a whopping 600km/s. If m is the

mass of a C60 molecule, ∆x will grow at a moderate 44 cm/s. And if m is

the mass of a peanut, ∆x will grow at a rate of about 2× 10−24 m/s; it will

take the present age of the universe to grow to about 750 nanometers.
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This illustrates one of the reasons why the fuzziness of the positions of

everyday objects is not readily observed.

4.4 Why energy is quantized

We have seen how the “old” theory accounts for the quantization of energy.

Let us now see how the “new” theory does it. We begin by observing that

if EP does not depend on time, then the Schrödinger equation (4.5) has

solutions that are products of a time-independent function ψ(x, y, z) and a

time-dependent phase factor e−(i/~)E t:

Ψ(x, y, z, t) = ψ(x, y, z) e−(i/~)E t. (4.24)

Because the probability density |Ψ|2 is independent of time, these solutions

are called stationary.

Problem 4.2. Both 〈k〉 and ∆k are constant.

Let us now find the solutions of Eq. (4.26) that can be associated with a

particle trapped inside a potential well like that in Fig. 4.3. Between x1
and x2, the particle’s total energy E exceeds EP , so that ψ(x) exhibits

wavelike behavior. To the left of x1 and to the right of x2, E is smaller

than EP , so that ψ(x) curves away from the x axis. (A classical particle

would oscillate to and fro between these two points.) The only way to

obtain a square-integrable solution is to make sure that the graph of ψ(x)

approaches the x axis asymptotically in both the limits x → +∞ and

x→ −∞. But for this the value of E must be exactly right.

Figure 4.4 sketches the first six solutions. The first solution lacks nodes.

Decreasing E below the ground state energy E0 will not yield another

solution. Increasing E just a little will not yield a solution either. E must

increase by a specific amount, from E0 to E1, if another solution is to be

obtained. The possible (“allowed”) energies thus form a sequence En, with

n ≥ 0 counting the number of nodes.

Let us remind ourselves, in concluding this chapter, what exactly these

stationary states represent. Every quantum-mechanical probability algo-

rithm serves a single purpose: to calculate the probabilities of possible

measurement outcomes on the basis of actual outcomes. If a particle is

associated with one of these states, the situation envisaged is one in which

an energy measurement has been made and an outcome Em has been ob-

tained. The corresponding wave function ψm(x) allows us to calculate
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Fig. 4.3 A potential well.

the probability of finding the particle’s position in any given interval of

the x axis, provided that the appropriate measurement is made, while the

Fourier transform of ψm(x) allows us to calculate the probability of finding

the particle’s momentum in any given interval of the k axis—again provided

that the appropriate measurement is made.

Problem 4.3. Plug the function (4.24) into Eq. (4.5) to find that ψ(x, y, z)

satisfies the time-independent Schrödinger equation

E ψ = − ~
2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)

+ EP ψ . (4.25)

We now cast the 1-dimensional version of this equation into the form

d2ψ(x)

dx2
= A(x)ψ(x) , where A(x) =

2m

~2

[

EP (x) − E
]

. (4.26)

Because Eq. (4.26) does not contain any complex numbers (apart from,

possibly, ψ itself), it has real-valued solutions. So let us assume that ψ(x)

is real. The first thing we notice is that if EP > E then ψ(x) has the same

sign as its second derivative. This means that the slope of ψ(x) increases

above and decrease below the x axis, so that ψ(x) crosses this axis at most
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Fig. 4.4 The first six stationary solutions of Eq. (4.26). x1 and x2 are recognizable as
the points at which the second derivative of ψ(x)—the curvature of its graph—vanishes.
At x1, the graph changes from bending away from the axis to bending toward it, and at
x2 it changes back from bending toward the axis to bending away from it.

once. On the other hand, if EP > E then ψ(x) has the opposite sign of

its second derivative. This means that the graph of ψ(x) bends toward the

x axis and keeps crossing it—just like a wave.
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Chapter 5

The Feynman route to Schrödinger
(stage 1)

5.1 The rules of the game

Suppose that you want to calculate the probability of a particular outcome

of a measurement M2 given the outcome of an earlier measurement M1.

Here is what you have to do:

• Choose a sequence of measurements that may be made in the meantime.

• Assign to each possible sequence of intermediate outcomes (called “alter-

native”) a complex number (called “amplitude”).

• Apply the appropriate rule:

(A) If the intermediate measurements are made (or if it is possible to find

out what their outcomes would have been if they had been made),

first square the absolute values of the amplitudes of the alternatives

and then add the results.

(B) If the intermediate measurements are not made (and if it is impos-

sible to find out what their outcomes would have been if they had

been made), first add the amplitudes of the alternatives and then

square the absolute value of the result.

These rules will be derived in Chap. 8. Here we will use them as our starting

point.

5.2 Two slits

According to Feynman et al. (1965), the following experiment “has in it

the heart of quantum mechanics.” The setup consists of an electron gun G,

a plate with two slits L and R equidistant from G, and a backdrop or

41
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Fig. 5.1 Setup for the two-slit experiment with electrons.

screen at which electrons are detected (Fig. 5.1). The initial measurement

indicates that an electron has been launched at (the position of) G. (If we

assume, as we will, that G is the only source of free electrons, then the

detection of an electron behind the slit plate also indicates the electron’s

launch at G.) The final measurement indicates the position—along an axis

across the backdrop—at which the electron is detected. A single interme-

diate measurement, if made, indicates the slit through which the electron

went. Thus there are two alternatives:

• The electron went through the left slit (L).

• The electron went through the right slit (R).

The corresponding amplitudes will be denoted by aL and aR. The event

whose probability we wish to calculate is the detection of the electron by a

detector (situated at) D. Here is what we need to know in order to be able

to perform this calculation:

• aL is the product of two complex numbers, called propagators, for which

we shall use the symbols 〈D|L〉 and 〈L|G〉. Thus aL = 〈D|L〉 〈L|G〉. By
the same token, aR = 〈D|R〉 〈R|G〉.
• The absolute value of 〈B|A〉 is inverse proportional to the distance BA

between A and B.

• The phase of 〈B|A〉 is proportional to BA.

5.2.1 Why product?

In Sec. 4.3 we arrived at the conclusion—without invoking the “uncer-

tainty” relation (4.18)—that the stability of atoms requires the product
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∆x∆p to have a positive lower limit. Hence ∆p → ∞ as ∆x → 0. What

does this tell us about the probability p(C←B|A) with which an electron

launched at A is detected first at B and then at C—assuming for simplic-

ity’s sake that A, B, and C are exact locations?

If the electron is detected at B, its momentum at the time of detec-

tion at B is as fuzzy as it gets. Hence the probability p(C|B), with which

an electron that has been detected at B is detected at C, does not de-

pend on whether or not it was initially launched at A. The probability

p(C|B) of its detection at C (given that it has been detected at B) and the

probability p(B|A) of its detection at B (given that it has been launched

at A) are therefore independent. The product rule of Sec. 1.4 thus ap-

plies: p(C←B|A) = p(C|B) p(B|A). And since the probability associated

with a single alternative is the absolute square of its amplitude, the prod-

uct rule also applies to the amplitude a(C←B|A); this is the product of

a(C|B) = 〈C|B〉 and a(B|A) = 〈B|A〉.

5.2.2 Why inverse proportional to BA?

Imagine a sphere of radius R centered at A. Let pR be the probability with

which a particle launched at A is found by a detector monitoring a unit

area of the surface S of this sphere. Because the particle proceeds from

A in no particular direction, pR is constant across S. If S is covered with

detectors that jointly monitor the entire sphere, the probability that one of

them—no matter which—detects the particle, equals 1. Since (the area of)

S is proportional to R2, this means that pR is inverse proportional to R2,

and that the corresponding amplitude is inverse proportional to R. Hence

|〈B|A〉| is inverse proportional to BA.

5.2.3 Why proportional to BA?

Because a particle launched at A proceeds in no particular direction, the

phase of 〈B|A〉 cannot depend on the direction in which B lies relative

to A. It can only depend on the distance between A and B. And if we use

a sensible metric, equal phases will correspond to equal distances.

A metric is a method of assigning distances to pairs of points or, more

generally, a method of assigning lengths to curves. It is one of those math-

ematical machines: insert two points or insert a curve, and out pops the

distance between the points or the length of the curve. What is important

here is that space does not come with an inbuilt metric. It is we who chose
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Fig. 5.2 The probability of detection according to Rule A (the solid curve) is the sum
of two probability distributions (the dotted curves), one for the electrons that went
through L and one for the electrons that went through R.

the metric that we shall use, and our choice ought to be such as to make the

formulation of the laws of physics as simple as possible. At the basic level

of propagators associated with particles moving freely, the obvious choice

is to let equal distances correspond to equal phases. The phase of 〈B|A〉
will therefore be proportional to BA.

5.3 Interference

We are now in a position to calculate the probability p(D|G) with which

an electron launched at G is found by a detector situated at D. According

to Rule A (Fig. 5.2),

pA(D|G) =
∣
∣〈D|L〉 〈L|G〉

∣
∣
2
+
∣
∣〈D|R〉 〈R|G〉

∣
∣
2
. (5.1)

The slits are equidistant from G, so 〈L|G〉 = 〈R|G〉. Hence in order to be

able to plot pA(D|G) as a function of the position x of D, we only need to

calculate

|〈D|L〉|2 + |〈D|R〉|2 =
1

DL
2 +

1

DR
2 . (5.2)

The missing overall factor can be recovered by requiring that the area under

the plot should be 1.

Calculated according to Rule B (Fig. 5.3), the probability pB(D|G) with

which an electron launched at G is found by a detector at D is proportional

to |〈D|L〉+ 〈D|R〉|2. This equals
(

eikDL

DL
+
eikDR

DR

)(

e−ikDL

DL
+
e−ikDR

DR

)

=
1

DL
2 +

1

DR
2 +

2 cos(k∆)

DL DR
,

(5.3)
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Fig. 5.3 The probability of detection according to Rule B.

where ∆ is the difference between DR and DL, and k is the proportionality

factor that relates the phase α(BA) = k BA to the distance BA.

Problem 5.1. (∗) Verify these calculations.

The last term of Eq. (5.3), which is responsible for the difference between

the plots in Figs. 5.2 and 5.3, is frequently referred to as an “interference

term.” It accounts for two remarkable facts. The first is that near the (lo-

cal) minima of Fig. 5.3, the probability of detection is less if both slits are

open than if one slit is shut. The second is that the (absolute) maximum

of Fig. 5.3 is twice as high as the maximum of Fig. 5.2. The first fact is

usually attributed to “destructive interference,” the second to “constructive

interference.” This terminology is prone to cause a great deal of confusion.

Quantum-mechanical interference is not a physical mechanism or process.

Whenever we say that “constructive interference occurs,” we simply mean

that a probability calculated according to Rule B is greater than the same

probability calculated according to Rule A. And whenever we say that “de-

structive interference occurs,” we simply mean that a probability calculated

according to Rule B is less than the same probability calculated according

to Rule A.

5.3.1 Limits to the visibility of interference fringes

The only quantity that is characteristic of the freely propagating particles

used in this experiment is the proportionality factor k. As was mentioned
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Fig. 5.4 If the central maximum of Fig. 5.3 is located at C and the difference between
RD and LD equals λ, then the first maximum to the left of C is located at D.

in Sec. 5.2.3, its constancy ensures that equal distances correspond to equal

phases. Because phases are cyclic with a period of 2π, the particles in this

experiment define a unit of length λ via k = 2π/λ. While distances per se,

unlike meter sticks, are unobservable, this unit of length can be deduced

from the interference pattern produced by the particles. Figure 5.4 shows

how.

But the wavenumber k = 2π/λ associated with a particle is related to

the particle’s momentum via p = ~k, and p is proportional to the particle’s

mass. If the two-slit experiment is performed with particles of greater mass

(other things being equal), λ will be smaller, and the interference maxima

will be more closely spaced as a result (Fig. 5.5). If we keep increasing

the mass of the particles employed, there comes a point beyond which

the maxima can no longer be resolved, for the intervals monitored by real

detectors cannot be made arbitrarily small. Several maxima and minima

will come to lie in the same interval I , so that the relative frequency with

which particles are detected in I will indicate the mean value of pB(D|G)

across I . A plot obtained with insufficiently small detectors will therefore

resemble the solid line in Fig. 5.2. The peculiar behavior predicted by

Rule B will no longer be in evidence. This is another reason why everyday

objects appear to behave in accordance with the laws of classical physics.
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Fig. 5.5 An interference pattern obtained with particles of greater mass.

The limit imposed on the observability of interference patterns by the

mass of the objects employed can be raised by using diffraction gratings—

plates containing large numbers of closely spaced slits—instead of a plate

with only two slits [see Arndt et al. (1999); Brezger et al. (2002); Nairz et

al. (2001)]. But the necessity of using closely spaced and hence narrow slits

then limits the size of the objects with which interference can be observed.

5.4 The propagator as a path integral

Let us replace the plate with two slits by a plate with n holes Bk. Instead of

being the sum of two terms, the propagator 〈D|G〉 is now a sum of n terms,

〈D|G〉 =

n∑

k=1

〈D|Bk〉 〈Bk|G〉 . (5.4)

Next, let us replace the plate with n holes by m such plates a distance ∆y

apart. The resulting propagator is

〈D|G〉 =

n∑

k1=1

· · ·
n∑

km=1

〈D|Bkm
〉 · · · 〈Bk2

|Bk1
〉 〈Bk1

|G〉 . (5.5)

Let us drill more holes in each plate, and let us add more plates. And still

more holes, and still more plates. What happens if we drill so many holes

in each plate that the plates are no longer there? What happens is that
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the sum
n∑

k1=1

· · ·
n∑

km=1

gets replaced by an integral
∫
DC over all paths that lead from from G

to D, and the amplitude

〈D|Bkm
〉 · · · 〈Bk2

|Bk1
〉 〈Bk1

|G〉 (5.6)

associated with the alternative

G→ Bk1
→ Bk2

→ · · · → Bkm
→ D (5.7)

gets replaced by a functional Z[C, G → D]. Unlike a function, which has

input slots for a finite number of variables, a functional has an input slot

for a function—in this case the function that describes the path C from G

to D. The resulting propagator is

〈D|G〉 =

∫

DC Z[C, G→ D] . (5.8)

This is not an ordinary (Riemann) integral
∫ b

a
dx f(x), to which each

infinitesimal interval dx makes a contribution proportional to the value

of f(x) inside it, but a path integral, to which each infinitesimal bundle of

paths DC makes a contribution proportional to the value of Z inside it. As

it stands, it is no more than an idea of an idea, albeit a fruitful one, as we

shall see.

Let us note, to begin with, that if a path C consists of two segments C1
and C2, the multiplicativity of successive propagators, Eq. (5.4), translates

to

Z[C] = Z[C2]Z[C1] . (5.9)

5.5 The time-dependent propagator

The alternatives considered so far in this chapter were independent of time.

It did not matter when the electron left G, when it passed the slit plate, or

when it was detected at D. The measurements considered were measure-

ments that indicated (or would have indicated if performed) where particles

were detected but not when they were detected. The paths considered in

the previous section were paths in space, not paths in spacetime (Fig. 5.6).
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Fig. 5.6 A typical spacetime diagram displaying one space axis and the time axis. Also

shown is the spacetime path C of a (classical) object that travels along the x axis with
varying speed. It leaves xA at the time tA and arrives at xB at the time tB . Its speed
dx/dt is the inverse of the slope dt/dx of C. The upward motion of the dashed line
suggests time’s passage toward the future.

Problem 5.2. Describe the motion of the object whose spacetime path is

shown in Fig. 5.6. Where does it accelerate, where does it decelerate, where

does it reverse its direction of motion?

Let us now interpose, between the particle’s launch at G and its detection

atD, a succession ofm position measurements made at regular intervals ∆t.

Each measurement uses an array of detectors monitoring n mutually dis-

joint regions R1, R2, . . . Rn. In other words, we replace the plates, each

extending in two spatial dimensions and stacked into the third, by hy-

perplanes extending in all three spatial dimensions and stacked into the

temporal dimension, and we replace the spacing ∆y of the plates by the

time ∆t between measurements. What happens in the limit in which (i) the

total region monitored becomes the whole of space, (ii) the volumes of the

individual regions tend to zero, and (iii) ∆t also tends to zero?

What happens is that the integral (5.8) over paths in space leading

from G to D becomes an integral over paths in spacetime that start at

the point rA (with coordinates xA, yA, zA) at the time tA and end at the

point rB (with coordinates xB , yB , zB) at the time tB :

〈rB , tB |rA, tA〉 =
∫

DC Z[C|rA, tA → rB , tB ] . (5.10)
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5.6 A free particle

Now focus on an infinitesimal path dC from x, y, z, t to x + dx, y + dy,

z+dz, t+dt. In general, the amplitude Z(dC) will be a function of x, y, z, t

and dx, dy, dz, dt. In the case of a free particle, however, Z(dC) can de-

pend neither on the location of dC in spacetime (given by the coordinates

x, y, z, t) nor on the orientation of dC in spacetime (given by the ratios of

the differentials dx, dy, dz, dt). Z(dC) can only depend on what for the time

being we may call the “length” ds of dC—a function of dx, dy, dz, dt that

we need to determine. For a free particle, then, Z(dC) = Z(ds).

The multiplicativity of successive propagators, Eq. (5.9), now translates

to

Z(ds1 + ds2) = Z(ds1)Z(ds2) . (5.11)

As we observed in Sec. 3.5, any function satisfying this equation has the

form f(x) = ax. It follows that Z(ds) is of the form ads or, if we introduce

a complex number z such that a = ez,

Z(ds) = ez ds. (5.12)

Equation (5.11) now takes the form

ez(ds1+ds2) = ez ds1 ez ds2 . (5.13)

If instead of combining two infinitesimal path segments we combine all

infinitesimal segments that make up a spacetime path C, we obtain the

amplitude associated with C:

Z[C] (1)
=
∏

C
Z(dC) (2)

=
∏

C
Z(ds)

(3)
=
∏

C
ez ds (4)

= ez
∫

C
ds (5)

= ezs[C]. (5.14)

The first equality generalizes Eq. (5.9). The product
∏

C multiplies the

infinitely many amplitudes associated with the infinitesimal segments that

make up C. The second equality holds for a free particle. The third follows

from Eq. (5.12). The fourth generalizes Eq. (5.13). The integral
∫

C ds,
which adds up the “lengths” of the infinitesimal segments that make up C,
equals the “length” s[C] of C; this accounts for the fifth equality.

5.7 A free and stable particle

We proceed to calculate the probability with which a free particle detected

at rA at the time tA still exists at the time tB . For a stable free particle
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this must be equal to unity. We obtain this probability by integrating the

absolute square of the propagator (5.10) (as a function of rB) over the

whole of space, with Z[C] replaced by ez s[C|rA,tA→rB ,tB ]:
∫

|〈rB , tB|rA, tA〉|2 d3rB =

∫ ∣
∣
∣
∣

∫

DC ez s[C|rA,tA→rB ,tB ]

∣
∣
∣
∣

2

d3rB . (5.15)

If you contemplate this with a calm heart and an open mind, you will

notice that if the complex number z = a + ib had a real part a 6= 0, the

path integral would contain a factor ea s[C|rA,tA→rB ,tB ], and the integral

over space, considered as a function of tB, would blow up exponentially (if

a > 0) or fall off exponentially (if a < 0). It could not remain equal to

unity. For a free and stable particle, therefore, z is an imaginary number

ib, and the amplitude associated with a path C is

Z[C|rA, tA → rB, tB ] = eibs[C|rA,tA→rB ,tB ] . (5.16)

The behavior of a free and stable particle thus is controlled by a single real

number b. To discover its significance, we need to know more about the

“length” functional s[C], and to this end we need to acquaint ourselves with

the special theory of relativity.
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Chapter 6

Special relativity in a nutshell

6.1 The principle of relativity

Let us imagine a universe containing a single object. Would we be able

to attribute to this object a position—to say where it is? Of course we

wouldn’t. At a minimum we need two objects for this. If we have two ob-

jects, as well as a method of measuring their distance, we can attribute to

them a distance, so we can say how far one is from the other. We can imag-

ine a straight line from one to the other, but if this is all there is, we cannot

attribute to this line an orientation. The bottom line: there is no such thing

as an absolute position or orientation. Positions and orientations are rela-

tive. If we want to make physical sense, we can only speak of the positions

and orientations of physical objects relative to other physical objects.

By the same token, if we were to imagine a world in which a single event

takes place, we would not be able to attribute to this event a time—to say

when it occurs. At a minimum we need two events for this. If we have two

events, as well as a method of measuring the time interval between them,

we can say how much time has passed between them. So there is no such

thing as an absolute time either. If we want to make physical sense, we can

only speak of the times of physical events relative to other physical events.1

And if we were to again imagine a world containing a single object, we

wouldn’t be able to attribute to this object a velocity—to say how fast it

1While one may think of the Big Bang as the beginning of time, this singular event
transcends the local physics we are concerned with at present. “Local” is used here in
the same sense in which we say that a curve is locally straight or a warped surface is
locally flat—the curvature of a sufficiently small segment of a line or patch of a surface
can be ignored. While spacetime itself may be and, in a sense, is warped, the special
theory of relativity deals with regions of spacetime that are so small or so weakly warped
that their curvature need not be taken into account.

53
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was moving, in which direction it was moving, or even if it was moving at

all. So there is no such thing as absolute rest either. If we want to make

physical sense, we can only speak of the velocities with which physical

objects move relative to each other.

All of this is encapsulated in the principle of relativity, according to

which all inertial coordinate systems are created equal : the laws of physics

do not “favor” any particular inertial frame or class of such frames.

A coordinate system or frame is inertial if (and only if) the components

x, y, z of the position of any freely moving classical object change by equal

amounts ∆x,∆y,∆z in equal time intervals ∆t. In other words, the ratios

formed of ∆x,∆y,∆z and ∆t are constants. Hence if F is an inertial frame,

then so is any coordinate frame that, relative to F ,

• is shifted (“translated”) in space by a given distance in a given direction,

• is shifted (“translated”) in time by a given amount of time,

• is rotated by a given angle about a given axis, and/or

• moves with a constant velocity.

6.2 Lorentz transformations: General form

The task now before us is to express the coordinates t and r = (x, y, z) of

an inertial frame F1 in terms of the coordinates t′ and r′ = (x′, y′, z′) of

another inertial frame F2. We will make the following assumptions:

• The coordinate origins of the two frames coincide:

t′ = 0 and r′ = 0 mark the same spacetime location as t = 0 and r = 0.

• The spatial axes of the two frames are parallel.

• F2 moves with a constant velocity w relative to F1.

Whatever moves with a constant velocity in one inertial frame will do so in

any other inertial frame. This means that the transformation from t, r to

t′, r′ maps straight lines onto straight lines (in spacetime). Such a transfor-

mation is linear: the dashed coordinates t′, x′, y′, z′ are linear combinations

of the undashed ones:

t′ = a00t+ a01x+ a02y + a03z ,

x′ = a10t+ a11x+ a12y + a13z ,

y′ = a20t+ a21x+ a22y + a23z ,

z′ = a30t+ a31x+ a32y + a33z . (6.1)
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To determine the coefficients aik, we cast these equations into the fol-

lowing form:

t′ = A t+ B · r,
r′ = C r + (D · r)w + E t . (6.2)

The real number A is the same as a00, the vector B has the components

(a01, a02, a03), and the vector E has the components (a10, a20, a30). The

part of r′ that is linear in r must be constructed out of the only available

vectors, namely w and r itself. It therefore has two components, one parallel

to r and one parallel to w. Because the component parallel to w must also

be linear in r, its coefficient must be a scalar product formed out of r and

another vector D.

Our next order of business is to find the real numbers A and C and the

vectors B, D, and E. They can only depend on w. More specifically, A

and C must be functions of the magnitude w of w, and B, D, and E must

be parallel to w with magnitudes depending solely on w. Thus,

t′ = a(w) t+ b(w)w · r , (6.3)

r′ = c(w) r +
d(w)

w2
(w · r)w + e(w)w t . (6.4)

Problem 6.1. What is achieved by the division by w2 in the second term

on the right-hand side of Eq. (6.4)?

We obtain our first constraint on the five functions of w by considering an

object O whose position relative to F1 is given by r = wt, so that

r′ = [c(w) + d(w) + e(w)]w t .

Because both O and F2 move with velocity w relative to F1, O is actually

at rest in F2. Hence

c(w) + d(w) + e(w) = 0 . (6.5)

To obtain further constraints, we make use of the inverse transformation.

Since F1 moves with velocity −w relative to F2, this is given by

t = a(w) t′ − b(w)w · r′ , (6.6)

r = c(w) r′ +
d(w)

w2
(w · r′)w − e(w)w t′ . (6.7)

We now simplify matters further by choosing the space axes so that w has

the components (w, 0, 0). Equations (6.3) and (6.4) then reduce to

t′ = at+ bwx , x′ = cx+ dx + ewt , y′ = cy , z′ = cz , (6.8)
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while Eqs. (6.6) and (6.7) reduce to

t = at′ − bwx′ , x = cx′ + dx′ − ewt′ , y = cy′ , z = cz′ . (6.9)

Plugging Eqs. (6.8) into Eqs. (6.9), we obtain

t = a (at+ bwx) − bw (cx+ dx+ ewt)

= (a2 − bew2) t+ (abw − bcw − bdw)x , (6.10)

x = c (cx+ dx+ ewt) + d (cx+ dx+ ewt)− ew (at+ bwx)

= (c2 + 2cd+ d2 − bew2)x+ (cew + dew − aew) t , (6.11)

y = c2y , (6.12)

z = c2z . (6.13)

To satisfy Eq. (6.10), we must have that

a2 − bew2 = 1 , (6.14)

abw − bcw − bdw = 0 , (6.15)

and to satisfy Eq. (6.11), we must have that

c2 + 2 cd+ d2 − bew2 = (c+ d)2 − bew2 = 1 , (6.16)

cew + dew − aew = 0 . (6.17)

Using Eq. (6.5) and the fact that w 6= 0, the last four equations reduce to

a2 − bew2 = 1 , (6.18)

b(a+ e) = 0 , (6.19)

e2 − bew2 = 1 , (6.20)

e(e+ a) = 0 . (6.21)

Equation (6.20) implies that e 6= 0. With this, Eq. (6.21) tells us that

e = −a. Equation (6.18) then implies that b = (1 − a2)/aw2. From

Eq. (6.12) or (6.13) we learn that c2 = 1, but since we have assumed

that the space axes of the two reference frames are parallel (rather than

antiparallel), we conclude that c = 1. Invoking once more Eq. (6.5), we

find that d = a− 1. With a single unknown function left, Eq. (6.8) reduces

to

t′ = a(w) t +
1− a2(w)

a(w)w
x , (6.22)

x′ = a(w)x − a(w)wt, y′ = y, z′ = z . (6.23)
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A further constraint can be obtained by combining two such transforma-

tions. If F3 moves with the speed v relative to F2, the transformation from

F2 to F3 is given by

t′′ = a(v) t′ +
1− a2(v)

a(v) v
x′ , (6.24)

x′′ = a(v)x′ − a(v) vt′, y′′ = y′, z′′ = z′ . (6.25)

Plugging (6.24) and (6.25) into (6.22) and (6.23) yields

t′′ = a(v)

[

a(w) t+
1− a2(w)

a(w)w
x

]

+
1− a2(v)

a(v) v

[
a(w)x − a(w)wt

]

=

[

a(v) a(w) − 1− a2(v)

a(v) v
a(w)w

]

︸ ︷︷ ︸

?

t+
[
. . .
]
x , (6.26)

x′′ = a(v)
[
a(w)x − a(w)wt

]
− a(v) v

[

a(w) t+
1− a2(w)

a(w)w
x

]

=

[

a(v) a(w) − a(v) v 1− a2(w)

a(w)w

]

︸ ︷︷ ︸

?

x−
[
. . .
]
t . (6.27)

Another way of writing (6.26) and (6.27) is

t′′ = a(u)
︸︷︷︸

?

t+
1− a2(u)

a(u)u
x , (6.28)

x′′ = a(u)
︸︷︷︸

?

x− a(u)ut, y′ = y, z′ = z , (6.29)

where u is the speed of F3 relative to F1. The expressions marked by a

star must be equal; hence

a(u) = a(v) a(w)− 1 − a2(v)

a(v) v
a(w)w = a(v) a(w)−a(v) v 1 − a2(w)

a(w)w
, (6.30)

and thus

K
Def
=

1− a2(w)

a2(w)w2
=

1− a2(v)

a2(v) v2
. (6.31)

Since this holds for arbitrary w and v, K is a universal constant. Solving

the first equality for a(w), we arrive at

a(w) =
1√

1 +Kw2
. (6.32)
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With this, the transformation (6.8) takes the form

t′ =
t+Kwx√
1 +Kw2

, x′ =
x− wt√
1 +Kw2

, y′ = y, z′ = z . (6.33)

Trumpets, please! We managed to reduce five unknown functions to a

single unknown constant. What is more, if K 6= 0, its value depends on

conventional units—those of an inverse velocity squared. We are therefore

left with three physically distinct options:

(i) K = 0 , (ii) K > 0 , (iii) K < 0 .

6.3 Composition of velocities

K = 0 yields the Galilean transformations of Newtonian mechanics:

t′ = t, x′ = x− wt . (6.34)

Problem 6.2. In this case u = v + w.

If K 6= 0, we can use Eqs. (6.30) and (6.31) to obtain

a(u) = a(v) a(w)(1 −Kvw) . (6.35)

Problem 6.3. (∗) In this case

u =
v + w

1−Kvw . (6.36)

If K > 0, we can introduce another constant c̃ = 1/
√
K, which has the

dimension of a velocity, and write

u =
v + w

1− vw/c̃2 . (6.37)

Setting v = w = c̃/2, we obtain u = (4/3) c̃ : the speed of F3 relative to

F1 is greater than the sum of the speeds of F3 relative to F2 and of F2

relative to F1. As both v and w approach c̃, u approaches infinity. And if

the product vw is greater than c̃2, u is negative!

Problem 6.4. Verify these statements.

If K < 0, we can introduce the constant c = 1/
√
−K, which again has the

dimension of a velocity, and write

u =
v + w

1 + vw/c2
. (6.38)
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Setting v = w = c/2, we obtain u = (4/5) c : the speed of F3 relative to F1

is less than the sum of the speeds of F3 relative to F2 and of F2 relative to

F1. And if v or w approaches c, then so does u.

Problem 6.5. Verify these statements.

6.4 The case against positive K

Pick an infinitesimal segment dC of a spacetime path C. In terms of F1, it

has the components (dt, dx, dy, dz), and in terms of F2, it has the compo-

nents (dt′, dx′, dy′, dz′). These components, too, are related to each other

via the transformation (6.33):

dt′ =
dt+Kwdx√

1 +Kw2
, dx′ =

dx− w dt√
1 +Kw2

, dy′ = dy , dz′ = dz . (6.39)

Problem 6.6.

dt′2 +K (dx′2 + dy′2 + dz′2) = dt2 +K (dx2 + dy2 + dz2) . (6.40)

If K = 0, this doesn’t tell us anything new.

If K > 0, it is convenient to choose measurement units in which K = 1,

so that distances and durations are measured in the same units. What you

have just proved is that the expression

ds̃2
Def
= dt2 + dx2 + dy2 + dz2 (6.41)

is invariant under the transformation (6.39) with K equal to unity.

This should remind you of something. If x, y, z are the components of

a vector r, then the expression x2 + y2 + z2 is invariant under coordinate

transformations that preserve the magnitudes of vectors. Here we have an

analogous expression that is invariant under the transformations (6.39). If

K > 0 were Nature’s choice, we could identify ds̃ as the “length” of the

path segment dC, which we are looking for, as you will recall from (Sec. 5.7).

But is K = 1 a live option? Consult Fig. 6.1. The speed of F2 relative

to F1 is w = tanα. The coordinates of a spacetime vector v in the x–t

plane are therefore related via

t′ =
t+ x tanα√
1 + tan2 α

, x′ =
x− t tanα√
1 + tan2 α

. (6.42)

Problem 6.7. (∗)
t′ = t cosα+ x sinα , x′ = x cosα− t sinα . (6.43)
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Fig. 6.1 Effect of a clockwise rotation of the x and t axes (Eq. 6.43) on the components
of a vector in a plane containing these axes.

This describes the effect of a clockwise rotation of the x and t axes on the

components of a vector in a plane containing these axes. Now we know

why u approaches infinity as both v and w approach c̃. (If K equals 1, so

does c̃.) The composition of two rotations of the x–t plane by 45◦ yields a

rotation by 90◦. This turns the t axis into the x axis. If w = v = c̃, then

an object at rest in F3 moves along the x axis of F1; for an observer at rest

in F1, it therefore moves with an infinite speed.

We also see why the composition of two positive speeds can yield a

negative speed. The reason why u comes out negative if vw > c̃2 is not

that an object at rest in F3 moves in the direction of the negative x axis

but that, for an observer at rest in F1, it moves backward in time.

But if making a U–turn is as easy in a spacetime plane containing the

time axis as it is in a plane containing two space axes, no coherent physics

can result. If what is a space axis for one observer can be the time axis

for another, then the difference between space and time depends on the

language we use to describe a physical situation, rather than on the physical
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situation itself. Yet any viable theory about the physical world must, at

a minimum, feature an objective—i.e., language-independent—difference

between space and time.

Here is one reason why. The stability of an atom—and with it that

of matter—rests crucially on the fuzziness of its internal relative positions

(Sec. 4.3). At the same time the position of an atomic electron relative

to the nucleus cannot be completely fuzzy, for in this case the probabil-

ity per unit volume of detecting it would be constant over the (abstract)

space of sharp positions relative to the nucleus. In other words, the elec-

tron’s position probability distribution (relative to the nucleus) would be

homogeneous. But this cannot be: the electron has to be more likely to

be detected in one place rather than in another. On the other hand, there

has to be a ground state that is homogeneous in time: the probabilities it

defines must not change with time. These two requirements cannot be met

unless there is a language-independent difference between space and time.

6.5 An invariant speed

If K ≤ 0, there exists an invariant speed. (Whatever moves with an invari-

ant speed relative to one inertial frame, moves with the same speed relative

to any other inertial frame.)

To see this, suppose that an object traveling with c relative to F2 also

travels with c relative to F3, regardless of the relative speed v between F2

and F3. Inserting w = c and u = c into Eq. (6.36), we obtain c = 1/
√
−K.

Thus an invariant speed equal to c exists if K ≤ 0 but not if K > 0.

If K = 0, the invariant speed is infinite: what travels with infinite

speed relative to one inertial frame, travels with infinite speed relative to

every inertial frame. In other words, if the departure of an object and its

arrival are simultaneous in one inertial frame, they are simultaneous in every

inertial frame. In Newtonian mechanics, simultaneity is therefore absolute:

whether or not two events happen at the same time is independent of the

reference frame that we use to describe their spatiotemporal relations.

If K is negative, the invariant speed is finite. Empirically we know that

an invariant speed exists, and that it is finite. We call it the “speed of light

(in vacuum).” Nature’s choice—K < 0—stands thereby revealed.

The invariant speed—be it infinite or finite—cannot be attained by any

object that can be at rest. To see this, imagine that you spend a finite

amount of fuel accelerating from zero to some speed v < c. In the frame in
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which you are now at rest, the difference between the invariant speed and

yours is still the invariant speed. You may repeat the procedure as many

times as you wish—the difference between the invariant speed and yours

remains the invariant speed. No finite amount of fuel is sufficient to reach

it. Moreover, since you have to attain the invariant speed before you can

make a U–turn in a plane that contains the time axis, the existence of an

invariant speed is what prevents you from going back in time.

6.6 Proper time

With K = −1/c2, the transformation (6.39) and the invariant expression

(6.40) take the following forms:

t′ =
t− wx/c2
√

1− w2/c2
, x′ =

x− wt
√

1− w2/c2
, y′ = y , z′ = z , (6.44)

ds2 = dt2 − (dx2 + dy2 + dz2)/c2 . (6.45)

Here at last is the wanted “length” ds of a path segment dC with compo-

nents dt, dx, dy, dz (Sec. 5.7). What is its physical significance?

Imagine a clock that travels along the infinitesimal segment dC of a

spacetime path C.2 The passing of time it shows is the passing of the

coordinate time of the inertial frame in which it is momentarily (i.e., during

an infinitesimal time interval) at rest. To distinguish this time from the

coordinate time of a fixed inertial frame, we refer to it as proper time.3 The

proper time s[C] associated with an entire spacetime path is thus related to

a system of inertial coordinates via
∫

C
ds =

∫

C

√

dt2 − (dx2 + dy2 + dz2)/c2 =

∫

C
dt
√

1− v2/c2 . (6.46)

2A word of caution. Because we cannot help visualizing a plane containing the time axis
as a spatial plane, like a figure on a page, we are tempted to think about the spatiotem-
poral whole as if it were a 4-dimensional spatial landscape, and about the present—a
3-dimensional section of this landscape—as if it advanced through this spatiotemporal
whole. This way of thinking involves an illegitimate duplication of time. First we men-
tally represent time as a dimension of a 4-dimensional whole, and then we think of this
4-dimensional whole (including its temporal dimension) as a spatial whole that persists
in another temporal dimension, in which the present advances through this now spa-
tially conceived whole. So if we say that an object “travels” along a spacetime path,
we must take care not to think of this object as traveling along a path in a persistent
4-dimensional expanse.
3Because we only have ds2 = dt2 (in the momentary rest frame), there are two possi-

bilities: ds = dt and ds = −dt. As we shall see in Sec. 15.2, the former holds for particles
while the latter holds for antiparticles [Costella et al. (1997)].
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The definition of proper time is restricted to timelike paths. A finite path

is called timelike if every one of its segments is, and an infinitesimal path

segment dC is timelike if ds2 > 0. By the same token, a finite path is

called spacelike if every one of its segments is, and an infinitesimal path

segment dC is spacelike if ds2 < 0. Finally, a finite path is called lightlike

or null if every one of its segments is, and an infinitesimal path segment dC
is lightlike or null if ds2 = 0.

Problem 6.8. The speed of an object moving along a timelike path is always

less than the invariant speed c.

Problem 6.9. (∗) Use dt2 − dx2/c2 = (dt′)2 − (dx′)2/c2 to show that c is

an invariant speed.

6.7 The meaning of mass

Now we are ready to address the question left pending in Chap. 5, con-

cerning the significance of the single particle-specific parameter b, which

appears in the propagator for a free and stable particle,

〈rB , tB |rA, tA〉 =

∫

DC eibs[C|rA,tA→rB ,tB ] . (6.47)

If proper time is measured in seconds, b is measured in radians per second.

Let us follow a particle as it travels from A to B along C. As its proper

time s increases, the phase factor eibs rotates in the complex plane. We may

therefore think of it as a clock. Each time a cycle is completed, it “ticks.”

Although a feature of the quantum-mechanical probability calculus rather

than of the physical world, this clock reveals a deep connection between

the quantum-mechanical probability calculus and the metric properties of

the physical world.

It is customary—

• to insert a minus (so that our clock actually turns clockwise!): e−ibs,

• to multiply by 2π (so that we may think of b as the rate at which the

clock “ticks”—the number of cycles it completes each second): e−i 2πbs,

• to divide by Planck’s constant h (so that b is measured in energy units,

in which case it is known as the particle’s rest energy): e−i(2π/h)bs =

e−(i/~)bs,

• to multiply by c2 (so that b is measured in mass units, in which case it

is known as the particle’s mass m): e−(i/~)bc2s = e−(i/~)mc2s.
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If we use natural units, in which ~ = c = 1, we are back at e−ibs with

b = m. Thus apart from a factor 2π, which converts between cycles per

second and radians per second, the mass of a particle is the rate at which

the clock associated with the particle ticks.

Now imagine two ordinary clocks initially at rest relative to the same

inertial frame (F1). They are located in about the same place and they

tick at the same rate. They then travel along different spacetime paths.

Eventually they are again at rest relative to the same inertial frame (F2)

and located in about the same place. Will they still tick at the same

rate? Indeed they will, but why? This is not something we should take for

granted. The reason why they still tick at the same rate is that (i) the rates

at which clocks tick depend on the rates at which free particles tick in their

rest frames, (ii) the rate at which a free particle ticks in its rest frame is

determined by its mass, and (iii) the mass of a free particle is independent

of the particle’s location in spacetime.

6.8 The case against K = 0

If K were to vanish, proper time would be the same as coordinate time.

Every spacetime path leading from A to B would contribute the same

amplitude eib (tB−tA) to the propagator (6.47), which would be hopelessly

divergent as a result—as well as independent of the distance between A

and B. To obtain finite probabilities, cancellations (“destructive interfer-

ence”) must occur. The phase factors eibs[C|rA,tA→rB ,tB ] must not all point

in the same direction in the complex plane.

While this does not quite rule out the option K = 0 (after all, there is

such a thing as non-relativistic quantum mechanics), the manner in which

one obtains the non-relativistic substitute for ds makes it clear that this

can only be an approximation—useful to the extent that all powers of v2/c2

but the first can be ignored.

Problem 6.10. Use the Taylor series to show that
√

1− v2

c2
= 1− 1

2

v2

c2
− 1

8

v4

c4
− · · · ≈ 1− 1

2

v2

c2
. (6.48)

In this approximation, Eq. (6.46) becomes

∫

C
ds ≈

∫

C
dt

(

1− 1

2

v2

c2

)

= (tB − tA)− 1

2c2

∫

C
dt v2 , (6.49)
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Fig. 6.2 Spacetime coordinates of an event A relative to two different inertial frames.

and the propagator (6.47) takes the form

〈rB , tB |rA, tA〉 =
∫

DC e−(i/~)mc2
∫

C
ds (6.50)

≈ e−(i/~)mc2(tB−tA)

∫

DC e(i/~)
∫

C
dt (mv2/2) . (6.51)

Since the phase factor e−(i/~)mc2(tB−tA) is the same for all paths from A

to B, it has no effect on the probabilities that the propagator serves to cal-

culate. Hence the following may be used as the non-relativistic propagator:

〈rB , tB |rA, tA〉 =
∫

DC e(i/~)
∫

C
dt (mv2/2). (6.52)

6.9 Lorentz transformations: Some implications

Let us explore, briefly, what is implied by the Lorentz transformation (6.44).

We shall use units in which c = 1.

Setting t′ = 0, we obtain t = wx. This tells us that the slope of the

x′ axis in the x–t frame (F1) equals w. Setting x′ = 0, we obtain t = x/w.
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Fig. 6.3 The unit points of the space and time axes are situated on hyperbolas.

This tells us that the slope of the t′ axis in the x–t frame is the inverse:

1/w. The axes of F2 are thus rotated relative to F1 by equal angles but

in opposite directions (Fig. 6.2). The spacetime path of a (classical) light

signal traveling in the direction defined by the x axis is therefore the bisector

of the angle between the x and t axes of both frames.

The big news here is that simultaneity is relative. Events that happen

at the same time in a given frame can be connected by a line parallel to

the frame’s space axis, just as events that happen in the same place in a

given frame can be connected by a line parallel to the frame’s time axis.

This is true in any case. But since in this case the space axes of the two

frames are not parallel, whether or not two events are simultaneous depends

on the language—the inertial reference frame—that we use to describe a

physical situation, rather than on the physical situation itself. If two events

E1, E2 are simultaneous relative to one frame, there are frames relative to

which E1 happens after E2 as well as frames relative to which E1 happens

before E2.
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Fig. 6.4 Lorentz contraction.

Next we want to determine the unit points on the space and time axes

of the two inertial frames of Fig. 6.2. To this end we use the invariant

expression

t2 − x2 = t′2 − x′2 .

The unit point of the time axis of F2 has the coordinates t′ = 1, x′ = 0; it

therefore lies on the hyperbola defined by t2 − x2 = 1. The unit point of

the space axis of F2 has the coordinates t′ = 0, x′ = 1; it therefore lies on

the hyperbola defined by x2 − t2 = 1 (Fig. 6.3).

Figure 6.4 illustrates the phenomenon of Lorentz contraction: a moving

object is shortened in the direction in which it is moving. The graph on

the left shows the spacetime area traced by a meter stick at rest in F1. In

F2, in which the stick is moving, it is shorter: the distance between its end

points on the x′ axis is less than a meter. The graph on the right shows

the spacetime area traced by a meter stick at rest in F2. In F1, in which

this stick is moving, it is shorter: the distance between its end points on

the x axis is again less than a meter.

Figure 6.5 illustrates the phenomenon of time dilation: a moving clock

runs slower than a clock at rest. Let clock 1 be at rest in F1, its spacetime

path being the t axis. Let clock 2 be at rest in F2, its spacetime path

being the t′ axis. In the language of F1, when a second has passed (on

clock 1), less than a second has passed on clock 2. In the language of F2,

when a second has passed (on clock 2), less than a second has passed on

clock 1.
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Fig. 6.5 Time dilation.

6.10 4-vectors

For later use we still need to define 4-vectors and their scalar product. A

4-vector is a quadruplet of real numbers that changes like the coordinates

of a point in spacetime when subjected to a Lorentz transformation. The

scalar product of the 4-vectors~a = (at, a) = (a0, a1, a2, a3) and~b = (bt,b) =

(b0, b1, b2, b3) is

(~a,~b)
Def
= a0b0 − a1b1 − a2b2 − a3b3 . (6.53)

To check that (~a,~b) is invariant under Lorentz transformations, we consider

the sum of two 4-vectors, ~c = ~a+~b, and calculate

(~c,~c) = (~a+~b,~a+~b) = (~a,~a) + (~b,~b) + 2(~a,~b) . (6.54)

Because the expression (6.45) is invariant under the transformation (6.44),

the “squares” (~a,~a), (~b,~b) and (~c,~c) are so, too (c = 1 was assumed). But

if these are invariant, then so is the last term on the right-hand side of

Eq. (6.54). In other words, (~a,~b) is a 4-scalar.
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Chapter 7

The Feynman route to Schrödinger
(stage 2)

7.1 Action

Let us return to Eq. (5.9). For an infinitesimal path made up of two seg-

ments, this takes the form

Z(dC) = Z(dC2)Z(dC1) . (7.1)

In Sec. 5.6 we noted that, in the general case, Z(dC) is a function of the

spacetime position of dC and of the coordinate differentials (dt, dr). Equa-

tion (7.1) is therefore tantamount to

Z(t, r, dt1 + dt2, dr1 + dr2) = Z(t, r, dt2, dr2)Z(t, r, dt1, dr1) . (7.2)

From this we conclude—by the same reasoning we used in Sec. 5.6—that

the amplitude associated with an infinitesimal path segment takes the form

Z(t, r, dt, dr) = ez dS(t,r,dt,dr). (7.3)

We further conclude—by the same reasoning we used in Sec. 5.7—that

for a stable particle the complex number z = a + ib has to be imaginary

(a = 0). It is customary to set b = 1/~, so that the infinitesimal action dS is

measured in conventional units (energy × time or momentum × distance):

Z(t, r, dt, dr) = e(i/~)dS(t,r,dt,dr). (7.4)

A glance at Eq. (6.50) now reveals the action differential for a free and

stable particle:

dS = −mc2ds . (7.5)

Equation (7.2) can be generalized to read

Z(t, r, u dt, u dr) = [Z(t, r, dt, dr)]u. (7.6)

69
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In conjunction with Eq. (7.4) this tells us that

dS(t, r, u dt, u dr) = u dS(t, r, dt, dr) . (7.7)

Technically this makes dS homogeneous (of first degree) in the differentials

dt and dr. This homogeneity allows us to interpret dS as defining a differ-

ential geometry—the kind of geometry one needs for assigning lengths to

paths on a warped surface, in a warped space, or in a warped spacetime.

7.2 How to influence a stable particle?

Suppose now that something—no matter what—exerts an influence—no

matter how—on a stable particle. How do we incorporate effects on the

motion of such a particle? Since all we have at our disposal is the lengths

of paths as defined by this differential geometry, the only way in which we

can formulate effects on the particle’s motion is through modifications of dS.

Since the action differential encapsulates the particle’s observable behavior,

it is moreover essential that it be invariant under Lorentz transformations.

It must not depend on the language—the reference frame—that we use to

describe the particle’s behavior. The scope of possible effects on the motion

of a particle is therefore limited to modifications of the action differential

(7.5) that preserve

(1) the homogeneity expressed by Eq. (7.7),

(2) the invariance of dS as a 4-scalar.

One possible modification that meets these requirements stands out as the

most obvious and straightforward: to preserve Lorentz invariance, we add

to (7.5) the scalar product (6.53) of two 4-vectors, and to preserve homo-

geneity, we let one of these vectors be d~r = (c dt, dr). We shall denote

the other vector, whose components are in general functions of t and r, by
~A = (V,A). The inclusion of a charge q allows the extent to which particles

are affected to differ between particle species. Thus:

dS = −mc2 ds− qV (t, r) dt+
q

c
A(t, r) · dr . (7.8)

Here Gaussian units are used. In SI units the factor 1/c is absorbed into

the definition of A:

dS = −mc2 ds− qV (t, r) dt + qA(t, r) · dr . (7.9)

As we shall see in Sec. 9.5, the fields V and A uniquely determine the

classical electric field E and the classical magnetic field B. In other words,
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the action differential (7.8) encapsulates the effects of the electromagnetic

force.1

7.3 Enter the wave function

In the non-relativistic approximation, the action differential (7.5) for a free

particle takes the form

dS =
m

2
v2 dt , (7.10)

as we gather from Eq. (6.52). If the vector potential vanishes or is small

enough to be ignored, and if we are dealing with a particle of unit charge

(q = 1), then the action differential (7.8) takes the simple form

dS =
(m

2
v2 − V

)

dt . (7.11)

We now introduce a function ψ(t, r) such that

ψ(rB , tB) =

∫

d3rA 〈rB , tB |rA, tA〉ψ(rA, tA) . (7.12)

Using the path–integral form of the propagator 〈rB , tB |rA, tA〉,
∫

DC e(i/~)
∫

C
dS , (7.13)

with the action differential (7.11), we arrive at

ψ(rB , tB) =

∫

d3rA

[∫

DC e(i/~)
∫

C
[(m/2)v2−V ]dt

]

ψ(rA, tA) . (7.14)

7.4 The Schrödinger equation

We obtain a more user-friendly expression to work with by considering

an infinitesimal time interval tB − tA = ε. In this case there is just one

(infinitesimal) path connecting (tA, rA) and (tB , rB), and all that remains

of the path integral is an as yet unknown normalization factor N :

ψ(rB , t+ ε) = N
∫

d3rA e
(i/~)[(m/2)v2−V ]ε ψ(rA, t) . (7.15)

1Strictly speaking, Eq. (7.8) encapsulates the possible electromagnetic effects on the
observable behavior of a scalar particle. By this we mean a particle whose wave function
has a single component. This excludes particles with spin (Chap. 12) and particles that
are affected by nuclear forces (Sec. 15.9).
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To further simplify our lives, we return to one spatial dimension,

ψ(xB , t+ ε) = N
∫ +∞

−∞
dxA e

(i/~)[(m/2)((xb−xA)2/ε2)−V ]ε ψ(xA, t) , (7.16)

and we substitute η for xA − xB (and drop the now superfluous index B):

ψ(x, t+ ε) = N
∫ +∞

−∞
dη e(i/~)[(m/2)(η2/ε2)−V ]ε ψ(x + η, t) . (7.17)

Take a look at the exponential factor eimη2/2~ε. In the limit ε → 0, this

completes an infinite number of cycles as η increases by a finite amount

unless η2 is of the same order of magnitude as ε. Unless this is the case, the

remaining factors of the integrand—e−iεV/~ and ψ(x+η, t)—can be treated

as constant during a cycle, so that the net contribution to the integral from

such a cycle is zero. Hence in order to take the limit ε → 0, we need to

expand e−iεV/~ ψ(x+ η, t) to the first power of ε or to the second power of

η:

e−iεV/~ ψ(x+ η, t) ≈
(

1− iεV

~

)(

ψ(t, x) +
∂ψ

∂x
η +

∂2ψ

∂x2

η2

2

)

≈
(

1− iεV

~

)

ψ(t, x) +
∂ψ

∂x
η +

∂2ψ

∂x2

η2

2
. (7.18)

The following integrals need to be evaluated:

I1 =

∫

dη eimη2/2~ε, I2 =

∫

dη eimη2/2~εη , I3 =

∫

dη eimη2/2~εη2.

I2 vanishes because the integrand is antisymmetric: the integral over the

interval from −∞ to 0 is the negative of the integral over the interval from 0

to +∞. Using Eq. (3.28) we find that I1 =
√

2πi~ε/m, and using Eq. (3.29)

we find that I3 =
√

2π~3ε3/im3. Putting everything together, we arrive at

ψ(x, t) +
∂ψ

∂t
ε = N

√

2πi~ε

m

(

1− iε

~
V (x, t)

)

ψ(x, t) +
N
2

√

2π~3ε3

im3

∂2ψ

∂x2
.

(7.19)

For the two sides to be equal as ε tends to zero, we must have that N =
√

m/2πi~ε. Equation (7.19) therefore reduces to

∂ψ

∂t
= − i

~
V (x, t)ψ(x, t) +

i~

2m

∂2ψ

∂x2
. (7.20)
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Since ε has dropped out, all that remains to be done is multiply both sides

with i~. The result is the standard form of the Schrödinger equation for

a particle of unit charge with one degree of freedom, moving under an

influence represented by the potential V (t, x) (cf. Eq. 4.4):

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
+ V ψ . (7.21)

Introducing the differential operator ∂/∂r—a machine that ac-

cepts a function f(r) and returns a vector with the components

(∂f/∂x, ∂f/∂y, ∂f/∂z)—we can write the corresponding equation for a

particle of charge q with three degrees of freedom in the following way

(cf. Eq. 4.5):
(

i~
∂

∂t
− qV

)

ψ =
1

2m

(
~

i

∂

∂r

)

·
(

~

i

∂

∂r

)

ψ . (7.22)

As we shall see in Sec. 11.6, i~(∂/∂t) is the operator associated with the

particle’s total energy, and (~/i)(∂/∂r) is the operator associated with the

particle’s total momentum. (See Sec. 11.2 for the reason why operators

are associated with observables.) On the left-hand side we thus have the

operator for the particle’s kinetic energy. The inclusion of the particle’s

potential momentum (q/c)A (see Eq. 9.20) is straightforward:
(

i~
∂

∂t
− qV

)

ψ =
1

2m

(
~

i

∂

∂r
− q

c
A

)

·
(

~

i

∂

∂r
− q

c
A

)

ψ . (7.23)



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

This page intentionally left blankThis page intentionally left blank



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

PART 2

A Closer Look

75



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

76

This page intentionally left blankThis page intentionally left blank



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

Chapter 8

Why quantum mechanics?

8.1 The classical probability calculus

An exhaustive description of a classical physical system at any one time

consists of the values of a fixed number N of coordinates and an equal

number of momenta. Such a description is usually referred to as the sys-

tem’s state, and the system is said to have N degrees of freedom. This

makes it possible to treat the state of a classical system with N degrees of

freedom as a point P in a 2N -dimensional space S known as phase space.

As an example consider the classical harmonic oscillator (Fig. 8.1). It

has one degree of freedom, a 2-dimensional phase space, and the following

equation of motion:

m
d2x

dt2
= −kx . (8.1)

Problem 8.1. In Fig. 8.1, which way does the oscillator’s state P move?

Clockwise or counterclockwise?

Now for some truisms. A physical theory is as good as its predictions, and

what quantum mechanics predicts are measurement outcomes. Moreover,

with the exception of measurements that have finite sets of possible out-

comes, no real-world experiment has an exact outcome. (Otherwise one

could experimentally establish whether a physical quantity with a contin-

uous range of possible values has a rational rather than irrational value.)

If measurement outcomes are digitally displayed, as may reasonably be as-

sumed, then every measurement has a finite number of possible outcomes.

A (successful) measurement is therefore equivalent to a finite number of

simultaneous measurements each having two possible outcomes. We will

call such a measurement an elementary test. An elementary test associated

77
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Fig. 8.1 Phase space diagram of a harmonic oscillator. Observe that when |x| is at a
maximum, p changes its sign (the oscillator reverses its motion), and when x = 0, |p| is
at a maximum (the oscillator moves fastest). See the main text for the significance of
the gray strips.

with a continuous physical quantity X typically answers the question: does

the value of X lie in the interval I? If the possible outcomes of a measure-

ment are the intervals Ik , k = 1, . . . , n, the outcome of one elementary test

will be positive, while those of the remaining n− 1 tests will be negative.

In our oscillator example, intervals of the x axis and intervals of the

p axis are some of the possible outcomes of elementary tests. In the system’s

phase space, the former intervals correspond to vertical strips, the latter to

horizontal strips, as indicated in Fig. 8.1. The intersection of a horizontal

and a vertical strip corresponds to the outcome of another elementary test,

determining the simultaneous truth of the propositions “the value of x

lies in the vertical strip” and “the value of p lies in the horizontal strip.”

Generalizing this possibility by allowing every subset of phase space to

be the possible outcome of an elementary test, we arrive at the following

characterization of the classical probability calculus.

• An elementary test is (represented by) a subset U of a phase space S.

• The algorithm that serves to assign probabilities to the outcomes of

elementary tests is a point P in S.

• The probability of obtaining a positive outcome for U is 1 if U con-

tains P (in set-theoretic notation, P ∈ U).

• The probability of obtaining a positive outcome for U is 0 if U does not

contain P (P 6∈ U).
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This probability algorithm is trivial, in the sense that it only assigns

trivial probabilities: 0 or 1. Because it is trivial, P can be thought of as a

state in the classical sense of the word: a collection of possessed properties.

We are licensed to believe that U represents a physical property (rather than

an elementary test), and that if the probability of finding this property is 1,

it is because the system possesses the property, irrespective of whether the

corresponding elementary test is made.

8.2 Why nontrivial probabilities?

One of the most spectacular failures of classical physics was its inability to

account for the stability of matter. “Ordinary” material objects

• have spatial extent (they “occupy space”),

• are composed of a (large but) finite number of objects without spatial

extent (particles that do not “occupy space”),

• and are stable (they neither explode nor collapse as soon as they are

created).

Ordinary objects occupy as much space as they do because atoms and

molecules occupy as much space as they do. So how is it that a hydrogen

atom in its ground state occupies a space roughly one tenth of a nano-

meter across? Thanks to quantum mechanics, we now understand that the

stability of ordinary objects rests on the indeterminacy or fuzziness of the

relative positions and momenta of their constituents (Sec. 4.3).

What, then, is the proper (i.e., mathematically rigorous and philosoph-

ically sound) way to define and quantify a fuzzy property or value? It is

to assign nontrivial probabilities—probabilities between 0 and 1—to the

possible outcomes of a measurement of this property. To be precise, the

proper way of quantifying a fuzzy property or value is to make counterfac-

tual probability assignments. (To assign a probability to a possible mea-

surement outcome counterfactually—contrary to the facts—is to assign it

to a possible outcome of a measurement that is not actually made.) In

order to quantitatively describe a fuzzy observable, we must assume that

a measurement is made, and if we do not want our description to change

the observable described, we must assume that no measurement is made.

We must assign probabilities to the possible outcomes of unperformed

measurements.
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8.3 Upgrading from classical to quantum

The classical probability algorithm cannot accommodate the nontrivial

probabilities that are needed for the purpose of defining and quantifying

a fuzzy physical property. Nor can the probability algorithms of classical

statistical physics be used for this purpose, for the nontrivial probabilities

of classical physics are distributions over a phase space, and this makes

them consistent with the belief that the real (albeit unknown) state is rep-

resented by a point P in this space. In other words, the probabilities of

classical statistical physics are (or allow themselves to be thought of as)

ignorance probabilities. They enter the picture when relevant facts are ig-

nored, and they disappear, or degenerate into trivial probabilities, when all

relevant facts are taken into account. The “uncertainty” relation (4.18), on

the other hand, guarantees that quantum-mechanical probabilities cannot

be made to disappear.

Arguably the most straightforward way to make room for nontrivial

probabilities is to upgrade1 from a 0-dimensional point P to a 1-dimensional

line L. Instead of representing a probability algorithm by a point in a phase

space, we represent it by a 1-dimensional subspace of a vector space V .

(Such a subspace is sometimes called a “ray.”) And instead of represent-

ing elementary tests by subsets of a phase space S, we represent them by

the subspaces of V . A 1-dimensional subspace L can be contained in a

subspace U , it can be orthogonal to U (L ⊥ U), but it may be neither

contained in nor orthogonal to U ; there is a third possibility, and this is

what makes room for nontrivial probabilities. L assigns probability 1 to

elementary tests represented by subspaces containing L, it assigns proba-

bility 0 to elementary tests represented by subspaces orthogonal to L, and

it assigns probabilities greater than 0 and less than 1 to tests represented

by subspaces that neither contain nor are orthogonal to L.

8.4 Vector spaces

Using the notation introduced by Paul Dirac, we define a vector space V
as a set of vectors |a〉, |b〉, |c〉. . . that can be (i) added and (ii) multiplied

with real or complex numbers α, β, γ. . . . The result of either operation is

another vector in V . There is a null vector |0〉 such that for any vector |a〉
we have |a〉 + |0〉 = |a〉 and 0 |a〉 = |0〉. If in addition (as we shall assume)

1The virtual inevitability of this “upgrade” was demonstrated by Jauch (1968).
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V comes equipped with an inner or scalar product—a machine that accepts

two vectors |a〉, |b〉 and returns a real or complex number 〈a|b〉, then V is an

inner product space. In a real vector space, only real numbers are admitted,

and the scalar product is symmetric as well as linear in both vectors. This

means that

〈a|b〉 = 〈b|a〉 , (8.2)

if |A〉 = α|a〉 and |B〉 = β|b〉 then 〈A|B〉 = αβ〈a|b〉 . (8.3)

In a complex vector space, these requirements are replaced by

〈a|b〉 = 〈b|a〉∗, (8.4)

if |A〉 = α|a〉 and |B〉 = β|b〉 then 〈A|B〉 = α∗β〈a|b〉 . (8.5)

Problem 8.2. The last two requirements follow from the demand that 〈a|a〉
be a real number.

In addition we have that

if |c〉 = |a〉+ |b〉 then 〈d|c〉 = 〈d|a〉+ 〈d|b〉 , (8.6)

〈a|a〉 ≥ 0 , (8.7)

if 〈a|a〉 = 0 then |a〉 = |0〉 . (8.8)

A few more definitions are needed:

• Two vectors are (mutually) orthogonal if their scalar product vanishes.

• A set of vectors |a1〉, . . . , |am〉 is linearly independent if α1|a1〉+ · · ·+
αm|am〉 = 0 implies that α1 = · · · = αm = 0.

• The dimension of V is the maximal number of linearly independent

vectors in V . It may be infinite, but only denumerably so.

• A system |c1〉, |c2〉, . . . of linearly independent vectors is complete if

every vector |b〉 in V can be written as a linear combination of these

vectors: there are real or complex numbers βi such that |b〉 =∑i βi|ci〉.
• The norm of a vector |a〉 is the positive square root

√

〈a|a〉.
• A unit vector is a vector whose norm equals unity.

• A basis—short for “orthonormal basis”—is a complete set of mutually

orthogonal unit vectors.

Thus if the vectors |ai〉 form a basis, then

〈ai|ak〉 = δik
Def
=

{
0 if i 6= k

1 if i = k
, (8.9)

and bi = 〈ai|b〉 is the i-th component of |b〉 with respect to this basis.
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Finally, if V is complex and in addition (as we shall assume) complete,

it is a Hilbert space. Completeness means that every (strongly) convergent

sequence |vk〉 of elements in V must have a unique limit |v〉 in V [see, e.g.,

Peres (1995), p. 81].

8.4.1 Why complex numbers?

Does the quantum-mechanical probability calculus actually need complex

vector spaces, or will real ones do? We obtained the answer in Sec. 5.7,

where it was shown that the stability of a free particle requires the ampli-

tude (5.16) associated with a spacetime path to be a phase factor, and thus

a complex number. With the present chapter, however, we want to make

a fresh start and derive the rules formulated in Sec. 5.1, which went into

the derivation of (5.16). To avoid circular reasoning, we could assume for

now that our vector spaces are complex and decide after those rules are in

place whether real vector spaces would have been up to the task. But we

already know the answer.

8.4.2 Subspaces and projectors

Here is what the decomposition of a 3-vector with respect to the basis

(x̂, ŷ, ẑ) looks like in the standard notation of Sec. 3.1:

v = x̂ (x̂ · v) + ŷ (ŷ · v) + ẑ (ẑ · v) . (8.10)

Problem 8.3. Pencil the vectors x̂ (x̂ · v), ŷ (ŷ · v), and ẑ (ẑ · v) into

Fig. 3.1.

Here is what the decomposition of a vector with respect to the basis vectors

|ai〉 looks like in Dirac’s notation:

|v〉 =
∑

i

|ai〉〈ai|v〉 . (8.11)

The advantage of this notation is that it consolidates two ways of thinking

about the terms on the right-hand side, inasmuch as they may be split in

either of two ways:

(i) |ai〉〈ai| |v〉, (ii) |ai〉 〈ai|v〉 . (8.12)

|v〉 and |ai〉 are vectors. 〈ai|v〉 is the i-the component of |v〉 with respect to

the basis vectors |ai〉. And |ai〉〈ai| is a machine that accepts a vector and

returns a vector: insert |v〉, and out pops |ai〉〈ai|v〉—the vector |ai〉 multi-

plied by 〈ai|v〉. We refer to it as the projection of |v〉 into the 1-dimensional
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subspace containing |ai〉, and we refer to an operator that projects into a

subspace as a projector. Think of (i) as what we do—projecting |v〉 into

the 1-dimensional subspace containing |ai〉—and of (ii) as what we get as

a result—the projection of |v〉 into this subspace.

A subspace is a vector space within a vector space. Specifically, U is a

subspace of V if and only if it satisfies the following condition: if |u〉 and

|v〉 are in U and a and b are numbers, then a|u〉+ b|v〉 is in U . If a subspace

U has a dimension that is (denumerably) infinite, we shall tacitly assume

that it is closed: every sequence of vectors in U that converges in V—i.e.,

that has as its limit a vector in V—also converges in U .

There is a one-to-one correspondence between subspaces and projectors.

If U is a subspace, so that there is in V a set of mutually orthogonal unit

vectors |b1〉, . . . , |bm〉 that allows every vector in U to be written as a linear

combination
∑m

k=1 vk|bk〉, then there is a unique operator that projects into

U , namely,

P̂(U) =

m∑

k=1

|bk〉〈bk| . (8.13)

We say that U is spanned by the vectors |b1〉, . . . , |bm〉. While the projector

(8.13) is unique, the vectors that span U are not. If |c1〉, . . . , |cm〉 is a

different set of mutually orthogonal unit vectors that span U , then

m∑

k=1

|ck〉〈ck| =
m∑

k=1

|bk〉〈bk| . (8.14)

Problem 8.4. If |v〉 ∈ U then P̂(U) |v〉 = |v〉.

Problem 8.5. P̂(U) P̂(U) = P̂(U).

If the vectors |ak〉 (k = 1, . . . , n) constitute a basis in V , then

Î =
n∑

k=1

|ak〉〈ak | (8.15)

is the identity operator, which projects every vector in V into V—a long-

winded way of saying that it does nothing.

Problem 8.6. The projector |v〉〈v| is invariant under the phase transfor-

mation |v〉 → eiα|v〉.
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Fig. 8.2 Two 2-dimensional subspaces of a 3-dimensional (real) vector space. Only in

the left diagram do the corresponding projectors commute.

8.4.3 Commuting and non-commuting projectors

Two operators Â, B̂ are said to commute if

ÂB̂ = B̂Â . (8.16)

This is the shorter way of saying that ÂB̂|v〉 = B̂Â|v〉 for every vector |v〉.
It is not hard to see that two projectors M̂ and N̂ commute if and only if

there is a basis |ai〉 such that

M̂ =
∑

some i

|ai〉〈ai| and N̂ =
∑

some k

|ak〉〈ak| . (8.17)

Consider the following example (Fig. 8.2):

M̂ = |2〉〈2|+ |3〉〈3|, N̂ = |1〉〈1|+ |3〉〈3| . (8.18)

Problem 8.7. (∗) The two projectors commute if there is a basis to which

the vectors |1〉, |2〉, |3〉 belong.

If |1〉 and |2〉 are not orthogonal (while the remaining pairs are), we have

M̂N̂ = |2〉〈2|1〉〈1|+ |3〉〈3| , N̂M̂ = |1〉〈1|2〉〈2|+ |3〉〈3| , (8.19)

that is, M̂ and N̂ do not commute. Figure 8.3 illustrates the respective

actions of M̂N̂ and N̂M̂ on a vector |v〉.
Our next task is to translate the commutativity condition for projectors

into the language of subspaces. The following two definitions will help us

do this.
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Fig. 8.3 The situation illustrated in Fig. 8.2 (right diagram) seen from above, looking

down the 3-axis. On the left, |v〉 is projected into M, then the resulting vector is
projected into N . On the right, |v〉 is projected into N , then the resulting vector is
projected into M.

• The orthocomplement A⊥ of a subspace A contains all vectors that are

orthogonal to all vectors in A.

• The span A∪B of two subspaces A and B is the smallest subspace that

contains both A and B.

Problem 8.8. A⊥ is a subspace.

Problem 8.9. The intersection A∩B of two subspaces, which contains all

vectors that are contained in both subspaces, is a subspace.

Problem 8.10. (A⊥)⊥ = A.

Problem 8.11. Convince yourself that A ⊂ B⊥ and B ⊂ A⊥ are equiva-

lent.

Figure 8.4 illustrates the relations that hold betweenM,N , their orthocom-

plements, and the intersections of all these just in case the corresponding

projectors M̂, N̂ commute. We gather from it that

(M∩N ) ∪ (M∩N⊥) ∪ (M⊥ ∩ N ) ∪ (M⊥ ∩ N⊥) = V . (8.20)

This is the wanted expression of the commutativity condition for projectors

in terms of the corresponding subspaces. A quick check will confirm that

it is satisfied by the subspaces in the left half of Fig. 8.2: while M⊥ ∩ N⊥
is empty,M⊥ ∩N is the subspace containing |1〉,M∩N⊥ is the subspace

containing |2〉, and M∩ N is the subspace containing |3〉. On the other

hand, Eq. (8.20) does not hold for the subspaces in the right half of Fig. 8.2:
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Fig. 8.4 The relations that hold between M, N , their orthocomplements, and the
intersections of all these if the corresponding projectors can be written in terms of a
common basis, as in Eq. (8.17). The dots represent the basis vectors. The horizontal
bracket associated with a subspace groups the 1-dimensional projectors that make up
the projector into that subspace. Above: neither of the subspaces M, N is contained in
the other. Below: M ⊂ N .

whileM∩N is the 1-dimensional subspace containing |3〉, the intersections

M∩N⊥, M⊥ ∩ N , andM⊥ ∩N⊥ are all empty.

8.5 Compatible and incompatible elementary tests

This brings us back to our central theme, the stability of matter. The sta-

bility of atoms requires an inequality of the form (4.18); the product of the

“uncertainties” associated with a relative position and the corresponding

relative momentum must have a positive lower limit. This makes it impos-

sible to simultaneously measure both quantities with arbitrary precision.

In other words, the stability of matter requires, via the stability of atoms,

that the two quantities be incompatible.

To arrive at a formal definition of compatibility, we consider two ele-

mentary tests. We first assume that one of the possible outcomes of the

second test (say, the positive outcome N ) is implied by one of the possible

outcomes of the first test (say, the positive outcome M): whenever the

outcomeM is obtained, a subsequent test of N is bound to yield a positive

result.

Problem 8.12. This is equivalent to M⊂ N .
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Problem 8.13. If N represents the positive outcome of an elementary test,

N⊥ represents the negative outcome.

There are three possible combinations of outcomes: (i) M and N ,

(ii) M⊥ and N , (iii) M⊥ and N⊥. Requiring compatibility for the two

tests amounts to requiring that for each combination of outcomes there

should be an algorithm assigning to it a probability equal to 1. In other

words, the two tests are compatible if and only if there are three 1-dimen-

sional subspaces Li such that

(i) L1 ⊂M∩N : L1 assigns probability 1 to both M and N ,

(ii) L2 ⊂M⊥ ∩N : L2 assigns probability 1 to both M⊥ and N ,

(iii) L3 ⊂M⊥ ∩N⊥: L3 assigns probability 1 to both M⊥ and N⊥.

It is easy to see that these requirements are satisfied: M ⊂ N , therefore

L1 exists; N 6= M, so N contains a line orthogonal to M, therefore L2

exists; and because M ⊂ N implies N⊥ ⊂ M⊥ (Problem 8.11), therefore

L3 exists. Thus if either outcome of the first test implies either outcome of

the second test, the two tests are compatible.

If neither outcome of the first test implies either outcome of the sec-

ond test, then compatibility requires, in addition, the existence of a

1-dimensional subspace L4 such that

(iv) L4 ⊂M∩N⊥: L4 assigns probability 1 to both M and N⊥.

If these four requirements are satisfied, none of the intersections M∩ N ,

M∩N⊥,M⊥∩N , andM⊥∩N⊥ can be equal to ∅. Since these intersections

are mutually orthogonal, one can find a set of mutually orthogonal unit

vectors |ai〉 (i = 1, . . . , n) such that those with i = 1, . . . , j span M∩ N ,

those with i = j + 1, . . . , k spanM∩N⊥, those with i = k+ 1, . . . ,m span

M⊥ ∩ N , and those with i = m + 1, . . . , n span M⊥ ∩ N⊥. To establish

that the n vectors |ai〉 in fact constitute a basis, we assume the contrary.

We assume, in other words, that there is a 1-dimensional subspace L that

is orthogonal to each of those four intersections. But this is the same as

saying that there is a probability algorithm that assigns probability 0 to all

possible combinations of outcomes, and this is a reductio ad absurdum of

our assumption.

The bottom line: two elementary tests with respective positive outcomes

M and N are compatible if and only if Eq. (8.20) holds. (IfM⊂N , then

this equation holds with M∩N⊥ = ∅.)
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8.6 Noncontextuality

If the subspaces A and B represent measurement outcomes, what measure-

ment outcome is represented by the span A ∪ B?
We begin with the following observations. Let p(A) and p(B) be the

respective probabilities of obtaining the outcomes represented by A and B.
Because a 1-dimensional subspace that is contained in either A or B is

contained in A∪ B, we have that
[
p(A) = 1 or p(B) = 1

]
=⇒ p(A ∪ B) = 1 . (8.21)

In words: if either A or B has probability 1, then A∪ B has probability 1.

Again, because a line orthogonal to both A and B is orthogonal to A ∪ B,
we also have that

[
p(A) = 0 and p(B) = 0

]
=⇒ p(A ∪ B) = 0 . (8.22)

The implications (8.21) and (8.22) hold, in particular, if A and B represent

disjoint intervals A and B of a variable Q with a continuous range of values.

But note that a 1-dimensional subspace can be in A ∪ B without being

contained in either A or B. This means that the outcome A ∪ B can be

certain even if neither A nor B is certain. Obtaining the outcome A ∪ B
therefore does not imply that the value of Q is either A or B. A fortiori, it

does not imply that the value of Q is any smaller interval in either A or B,

let alone a definite number.

Next imagine two perfect—one hundred percent efficient—detectors

D(A) and D(B) monitoring the two intervals. If the probabilities p(A)
and p(B) are both greater than 0 (and therefore less than 1), then it is not

certain that D(A) will click, and it is not certain that D(B) will click. Yet

if p(A ∪ B) = 1, then it is certain that either D(A) or D(B) will click.

What makes this certain?

The answer lies in the fact that quantum-mechanical probability assign-

ments are invariably made on the (tacit) assumption that a measurement

is successfully made; there is an outcome. For instance, if A and B are dis-

joint regions of space, and if a measurement has indicated the presence of

a particle in the union A∪B of these regions, then the tacit assumption is

that a subsequent position measurement made with two detectors monitor-

ing the respective regions A and B will yield an outcome—either detector

will click. So there is no mystery here, but the implication is that quantum

mechanics only gives us probabilities with which this or that outcome is

obtained in a successful measurement. It does not give us the probability
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with which an attempted measurement will succeed. A fortiori, it is inca-

pable of formulating sufficient conditions for the success of a measurement

[Ulfbeck and Bohr (2001)].

Now consider the following two measurements. The first, M1, has three

possible outcomes: A, B, and C. The second, M2, has two: A ∪ B and C.
We therefore have

p(A) + p(B) + p(C) = 1 as well as p(A∪ B) + p(C) = 1 . (8.23)

If, for instance, A, B, and C are disjoint regions of space, and if a particle

is certain to be found in the union of these regions, then M1 is certain to

find it in one of these three regions, while M2 is certain to find it in either

A ∪ B or C. It follows that

p(A ∪ B) = p(A) + p(B) . (8.24)

Or does it? Both measurements test for the possession of C, but whereas

M1 includes two additional tests, M2 only includes one. What gives us the

right to assume that the probability of a possible measurement outcome

is independent of what the other possible outcomes are? Equations (8.23)

hold in different experimental contexts. Is it legitimate to separate them

from their specific contexts so as to draw the conclusion (8.24)? In other

words, is it legitimate to assume noncontextuality?

Let us remember our objective. We are looking for a probability algo-

rithm that is capable of accommodating nontrivial probabilities and incom-

patible elementary tests. If common sense in the form of noncontextuality is

consistent with these requirements, we go for it. No need to make the world

stranger than it already is. By hindsight we know that Nature concurs.2

Problem 8.14. Projectors are said to be (mutually) orthogonal if the cor-

responding subspaces are. Show that the sum of two orthogonal projectors

is a projector.

Problem 8.15. If the orthogonal projectors Â and B̂ project into A and

B, respectively, the sum Â + B̂ projects into A ∪ B.

Problem 8.16. The projectors Â and B̂ corresponding to different out-

comes A and B of the same measurement are orthogonal.

2We also know that contextuality is an inescapable feature of situations in which prob-
abilities are assigned either on the basis of past and future outcomes (Sec. 13.8.1) or to
outcomes of measurements performed on entangled systems (Sec. 13.4).
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8.7 The core postulates

We are now ready to assemble the core postulates of quantum mechanics.

The first was stated in Sec. 8.3:

Postulate 1. Measurement outcomes are represented by the projectors of

a vector space.

In Sec. 8.5 we concluded that two elementary testsM andN are compatible

if and only if Eq. (8.20) holds, and in Sec. 8.4.3 we found that this is the

case if and only if the corresponding projectors commute. Hence

Postulate 2. The outcomes of compatible elementary tests correspond to

commuting projectors.

From the previous section, finally, we derive the following:

Postulate 3. If Â and B̂ are orthogonal projectors, then the probability

of the outcome represented by Â+ B̂ is the sum of the probabilities of the

outcomes represented by Â and B̂, respectively.

8.8 The trace rule

Postulates 1–3 are sufficient [Peres, 1995, p. 190] to prove Gleason’s theorem

[Gleason (1957); Pitowsky (1998); Cooke et al. (1985)], which holds for

vector spaces with at least three dimensions.3 The theorem states that

the probability of obtaining the outcome represented by the projector P̂ is

given by

p(P̂) = Tr(ŴP̂) , (8.25)

where Ŵ is a unique operator, known as density operator, whose properties

will be listed in a moment. The trace of an operator X̂ is defined by

Tr(X̂) =
∑

i

〈ai|X̂|ai〉 , (8.26)

3More recently, the validity of Gleason’s theorem has been extended to include
2-dimensional vector spaces [Fuchs (2001); Busch (2003); Caves et al. (2004)] by gener-
alizing from the projector valued measures used in this book to positive operator valued
measures or POVMs [Peres, 1995, Sec. 9–5]. If outcomes are represented by positive
operators, assigning probability 1 to one outcome no longer necessitates assigning prob-
ability 0 to a different outcome of the same measurement. POVMs are thus suited for
dealing with measurements that have overlapping outcomes, such as position measure-
ments with detectors whose sensitive regions intersect.
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where the vectors |ai〉 form a basis and the summation extends from i = 1

to the dimension of the system’s vector space. Think of 〈ai|X̂|ai〉 as the i-th
component of the vector X̂|ai〉 with respect to this basis. The definition of

the trace appears to be contingent on a basis, but actually this is not the

case. Let us insert a couple of identity operators Î =
∑

i |bi〉〈bi|:
∑

i

〈ai|X̂|ai〉 =
∑

i

〈ai |̂IX̂Î|ai〉 =
∑

i

∑

j

∑

k

〈ai|bj〉〈bj |X̂|bk〉〈bk|ai〉 .

Now we rearrange the complex factors on the right-hand side and take out

two identity operators:
∑

i

∑

j

∑

k

〈bk|ai〉〈ai|bj〉〈bj |X̂|bk〉 =
∑

j

∑

k

〈bk|bj〉〈bj |X̂|bk〉 =
∑

k

〈bk|X̂|bk〉 .

Voilà: the trace is independent of the basis that has been used in its defi-

nition.

Here is the promised list of properties of the density operator:

(i) Ŵ is linear : Ŵ
(
α|a〉+ β|b〉

)
= α Ŵ|a〉+ β Ŵ|b〉.

(ii) Ŵ is self-adjoint : 〈a|Ŵ|b〉 = 〈b|Ŵ|a〉∗.
(iii) Ŵ is positive: 〈a|Ŵ|a〉 ≥ 0.

(iv) Tr(Ŵ) = 1.

(v) Ŵ2 ≤ Ŵ.

Let us try to understand why Ŵ has these properties.

Problem 8.17. If P̂ is a 1-dimensional projector |v〉〈v|, the trace

rule (8.25) reduces to p(P̂) = 〈v|Ŵ|v〉.

The fact that Ŵ is self-adjoint ensures that the probability 〈v|Ŵ|v〉 is a

real number. (What could be the meaning of a complex probability?)

The positivity of Ŵ ensures that 〈v|Ŵ|v〉 does not come out negative.

(What could be the meaning of a negative probability?)

The outcomes of a maximal test (also known as a complete measure-

ment) are represented by a complete system of (mutually orthogonal)

1-dimensional projectors |ak〉〈ak| (k = 1, . . . , n). Tr(Ŵ) = 1 ensures that

the corresponding probabilities 〈ai|Ŵ|ai〉 add up to 1. Together with the

positivity of Ŵ, this ensures that no probability comes out greater than 1.

(What could be the meaning of a probability greater than 1?)

The last property covers two possibilities, Ŵ2 = Ŵ and Ŵ2 < Ŵ.

These will be discussed after a short mathematical digression.
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8.9 Self-adjoint operators and the spectral theorem

In what follows we take the liberty of writing |Âb〉 instead of Â|b〉 when

referring to the vector returned by Â upon insertion of |b〉.
If Â is a linear operator (like Ŵ above), there exists a linear operator

Â†, called the adjoint of Â, such that 〈a|Âb〉 = 〈Â†a|b〉 for every pair of

vectors |a〉, |b〉.

Problem 8.18. 〈a|Âb〉 = 〈b|Â†a〉∗.

Problem 8.19. Show that (i) (Â†)† = Â and (ii) (ÂB̂)† = B̂†Â†.

If (i) Â is linear, (ii) |a〉 is a vector, and (iii) α is a complex number such

that Â|a〉 = α|a〉, then |a〉 is an eigenvector of Â and α is the corresponding

eigenvalue.

Problem 8.20. A projector has exactly two eigenvalues, namely. . . .

Saying that Â is self-adjoint is the same as saying that Â† = Â. Self-

adjoint operators have two important properties. For one, their eigenvalues

are real, as we gather from the following equations:

α〈a|a〉 = 〈a|Âa〉 = 〈Âa|a〉 = α∗〈a|a〉 . (8.27)

For another, the eigenvectors of a self-adjoint operator that correspond

to different eigenvalues α1 6= α2 are orthogonal, as we gather from these

equations:

0 = 〈a1|Âa2〉 − 〈Âa1|a2〉 = (α2 − α1)〈a1|a2〉 . (8.28)

Problem 8.21. If a linear operator Â has m > 1 linearly independent

eigenvectors with the same eigenvalue, then the eigenvectors of Â corre-

sponding to this eigenvalue form an m-dimensional subspace.

For every self-adjoint operator Â, it is possible to construct a basis made up

entirely of eigenvectors of Â [see, for example, Marchildon, 2002, Sec. 2.5].

Suppose that the vectors |ai〉 constitute such a basis, and that the corre-

sponding eigenvalues are αi. Define the operator Â′ =
∑

i αi |ai〉〈ai| and

insert into it the generic vector |v〉 = ∑j vj |aj〉:

Â′|v〉 =
∑

i

∑

j

αivj |ai〉〈ai|aj〉 =
∑

i

αivi|ai〉 . (8.29)

We would get the same result if we inserted |v〉 into Â. But if two operators

act in the same way on every vector, they are identical: Â′ = Â. Hence
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the spectral theorem, which says that every self-adjoint operator Â has a

spectral decomposition

Â =
∑

i

αi |ai〉〈ai| . (8.30)

The eigenvalues αi form the spectrum of Â.

Problem 8.22. Write down the spectral decomposition of a projector P̂.

Problem 8.23. (∗) A self-adjoint operator satisfying Â2 = Â is a projec-

tor.

Problem 8.24. The trace of a projector is the dimension of the subspace

into which it projects.

8.10 Pure states and mixed states

If the density operator is idempotent (i.e., Ŵ2 = Ŵ), it is a projector,

and since the trace of Ŵ equals unity, it projects into a 1-dimensional

subspace. Since we began by upgrading from a point in a phase space to a

line (or ray) in a vector space, we are not surprised by this result. In this

case Ŵ = |w〉〈w| is called a pure state, |w〉 is referred to as a state vector

(which is unique up to a phase factor), and the trace rule simplifies to

p(P̂) = 〈w|P̂|w〉 . (8.31)

If in addition P̂ = |v〉〈v|, the trace rule boils down to the Born rule,

p(P̂) = 〈w|v〉〈v|w〉 = |〈v|w〉|2. (8.32)

If Ŵ2 < Ŵ, which means that 〈a|Ŵ2|a〉 < 〈a|Ŵ|a〉 for every vector |a〉,
then Ŵ is called a mixed state or mixture. What do we make of this

possibility? Given a spectral decomposition of Ŵ, the inequality Ŵ2 < Ŵ

takes the form
∑

k

α2
k |ak〉〈ak| <

∑

k

αk |ak〉〈ak| . (8.33)

Problem 8.25. (∗) For all eigenvalues αk of a mixture, 0 < αk < 1.

Problem 8.26. (∗) ∑k αk = 1.
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The eigenvalues of a mixed state thus have all the properties one ex-

pects from nontrivial probabilities associated with mutually exclusive and

jointly exhaustive possibilities: they are real, they are greater than 0,

they are less than 1, and they add up to 1. The obvious conclusion is

that mixed states define probability distributions over probability distri-

butions. They add a second layer of uncertainty to that inherent in pure

states. There are situations in which this additional uncertainty is sub-

jective in the same sense in which probability distributions over a clas-

sical phase space are subjective: the uncertainty arises from a lack of

knowledge of relevant facts. But there are also situations in which the

additional uncertainty is due to the nonexistence of relevant facts. In

these situations it represents an additional objective fuzziness, over and

above that associated with the individual projectors |ak〉〈ak| in Eq. (8.33).

We will encounter some examples of this kind of uncertainty in later

chapters.

8.11 How probabilities depend on measurement outcomes

It bears repetition: quantum mechanics serves to assign probabilities to

possible measurement outcomes on the basis of actual outcomes. What we

have learned so far in this chapter is (i) that the probabilities of possible

measurement outcomes are encoded in a density operator and (ii) how they

can be extracted from it. Our next order of business is to find out how the

density operator is determined by actual outcomes.

Suppose that Ŵ1 is the density operator appropriate for assigning prob-

abilities to the possible outcomes of any measurement that may be made

at the time t1. And suppose that a measurement M is made at t1, and

that the outcome obtained is represented by the projector P̂. What is the

density operator Ŵ2 appropriate for assigning probabilities to the possible

outcomes of whichever measurement may be made next, at t2 > t1?

As is customary in discussions of this kind, we focus on repeatable

measurements. If a physical system is subjected to two consecutive identical

measurements, and if the second measurement invariably yields the same

outcome as the first, we call these measurements repeatable.4

4This definition departs from the standard definition in that it allows Ŵ2 to be inde-
pendent of the time interval between the two measurements. (The standard definition
assumes that the second measurement is performed “immediately” after the first.)
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Let us put together the relevant information at hand:

(i) Ŵ2 is constructed out of Ŵ1 and P̂.

(ii) Tr(Ŵ2P̂`) = 0, where P̂` is any possible outcome of M other than P̂.

(iii) Ŵ2 is self-adjoint.

(iv) Tr(Ŵ2P̂) = 1.

Problem 8.27. ŴP̂ is self-adjoint if and only if Ŵ and P̂ commute.

The first two conditions are satisfied by Ŵ2 = Ŵ1P̂, Ŵ2 = P̂Ŵ1, and

Ŵ2 = P̂Ŵ1P̂, but only the last of these candidates satisfies the third

condition in case Ŵ1 and P̂ fail to commute. To satisfy the final condition

as well, all we have to do is divide by Tr(Ŵ1P̂) = Tr(P̂Ŵ1) = Tr(P̂Ŵ1P̂).

Thus,

Ŵ2 =
P̂Ŵ1P̂

Tr(Ŵ1P̂)
. (8.34)

Now suppose that M is a maximal test, and that P̂ = |w〉〈w|. Then

Ŵ2 =
|w〉〈w|Ŵ1|w〉〈w|
Tr(Ŵ1|w〉〈w|)

= |w〉 〈w|Ŵ1|w〉
〈w|Ŵ1|w〉

〈w| = |w〉〈w| . (8.35)

Lo and behold, if we update the density operator to take into account the

outcome of a maximal test, it turns into the very projector that represents

this outcome. Observe that in this case Ŵ2 is independent of Ŵ1.

8.12 How probabilities depend on the times of

measurements

We now relax the condition of repeatability and require only that mea-

surements be verifiable. A measurement M1, performed at the time t1, is

verifiable if it is possible to confirm its outcome by a measurement M2 per-

formed at the time t2 > t1. If M1 is repeatable, then it can be verified by

simply repeating it. Otherwise the verification requires (i) the performance

of a different measurement and (ii) the existence of a one-to-one correspon-

dence between the possible outcomes of M1 and those of M2. The second

requirement makes it possible to infer the outcome of M1 from the outcome

of M2.

If the two measurements are maximal tests, then there are two bases,

one made up of the vectors |ai〉, the other made up of the vectors |bk〉, such

that the projectors |ai〉〈ai| represent the possible outcomes of M1 and the
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projectors |bk〉〈bk| represent the possible outcomes of M2. The two bases

are related by some transformation

|ak〉 −→ |bk〉 = Û|ak〉 . (8.36)

8.12.1 Unitary operators

What do we know about the operator Û? To begin with, in the absence of

time-dependent influences acting on the measured system (and especially if

the system is closed, which for the moment we will assume), Û may depend

on the time difference t2 − t1 but not on t1 or t2 individually.

Suppose, next, that at t1 the generic outcome |w〉〈w| has been obtained.

Since the probabilities of the possible outcomes at t2 add up to unity, we

must have that
∑

k

|〈bk|Û(t2 − t1)|w〉|2 = 1 . (8.37)

Omitting the time dependence of Û, we can rewrite the left-hand side of

Eq. (8.37) in a number of ways:
∑

k

|〈bk|Û|w〉|2 =
∑

k

〈Ûw|bk〉〈bk|Ûw〉 = 〈Ûw|Ûw〉 = 〈w|Û†Û|w〉 ,

and it goes without saying to you should be checking the validity of each

equality. Equation (8.37) thus implies that

Û†Û = Î . (8.38)

This makes Û a unitary operator. By definition of the inverse operator

Û−1, which undoes the action of Û, we also have that

Û−1Û = Î . (8.39)

A unitary operator may therefore also be characterized by saying that its

inverse equals its adjoint:

Û−1 = Û†. (8.40)

Problem 8.28. (∗) The scalar product is invariant under unitary trans-

formations: 〈Ûw|Ûv〉 = 〈w|v〉.

Problem 8.29. (∗) The eigenvalues of unitary operators are phase factors.

Problem 8.30. (∗) If Û|u〉 = λ|u〉 then Û†|u〉 = λ−1|u〉.
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Problem 8.31. (∗) Eigenvectors of a unitary operator corresponding to

distinct eigenvalues are orthogonal.

Problem 8.32.
[
∑K

k=1 λk |ak〉〈ak|
]n

=
∑K

k=1 λ
n
k |ak〉〈ak|.

As you will recall, for every self-adjoint operator Â one can construct a

basis made up of eigenvectors of Â. The same is true for every unitary

operator Û. The spectral decomposition of a unitary operator has the

form

Û =
∑

k

eiαk |ak〉〈ak| . (8.41)

Let Â be self-adjoint. If we define eiÂ via the Taylor series of the expo-

nential function and use the spectral decomposition of Â, we find that the

eigenvectors of eiÂ are the same as those of Â. And if the corresponding

eigenvalues of Â are λk, then the corresponding eigenvalues of Û are the

phase factors eiλk :

eiÂ =

∞∑

n=0

(iÂ)n

n!

=
∞∑

n=0

in

n!

[
K∑

k=1

λk|ak〉〈ak|
]n

=
∞∑

n=0

in

n!

K∑

k=1

λn
k |ak〉〈ak|

=

∞∑

n=0

K∑

k=1

(iλk)n

n!
|ak〉〈ak |

=

K∑

k=1

eiλk |ak〉〈ak| . (8.42)

Thus every unitary operator Û can be cast into the form eiÂ, where Â is

self-adjoint.

There’s something else we know about Û(t2− t1). Since (t2 − t1) is the

amount of time we wait before performing the second measurement, and

since waiting from t1 to t2 is the same as waiting from t1 to t′ < t2 and

then waiting some more, from t′ to t2, we have that

Û(t2 − t1) = Û(t2 − t′) Û(t′ − t1) , (8.43)
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and thus

eiÂ(t2−t1) = eiÂ(t2−t′) eiÂ(t′−t1) . (8.44)

Since we also have that

eiÂ(t2−t′) eiÂ(t′−t1) = ei[Â(t2−t′)+Â(t′−t1)] ,

we find that Â depends linearly on its argument:

Â(t2 − t′) + Â(t′ − t1) = Â
(
(t2 − t′) + (t′ − t1)

)
= Â(t2 − t1) .

This allows us to introduce a self-adjoint operator Ĥ, known as the Hamil-

ton operator or simply the Hamiltonian, such that

Û(∆t) = e−(i/~) Ĥ∆t. (8.45)

The negative sign is again a convention. The division by ~ ensures that the

eigenvalues of Ĥ are measured in energy units. For infinitesimal dt we thus

have that

Û(dt) = Î− i

~
Ĥ dt . (8.46)

If we apply both sides to a vector |v〉 and use |v(t+ dt)〉 = Û(dt)|v(t)〉, we

obtain

|v(t+ dt)〉 − |v(t)〉 = − i
~
Ĥ|v(t)〉 dt , (8.47)

and thus

d|v〉
dt

= − i
~
Ĥ|v〉 . (8.48)

If the experimental conditions are time-dependent, Û depends on t in ad-

dition to its dependence on dt. This additional dependence goes into Ĥ.

If we use vector components vj = 〈aj |v〉 and operator components

Hjk = 〈aj |Ĥ|ak〉, we can cast Eq. (8.48) into the form

i~
dvj

dt
=

K∑

k=1

Hjkvk (for j = 1, . . . ,K) . (8.49)
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8.12.2 Continuous variables

When dealing with a continuous variable—say, the position of a particle in

one spatial dimension—it is customary to introduce a non-denumerably in-

finite basis of “improper” vectors |x〉. With respect to such a basis, a generic

vector |v〉 has the components v(x) = 〈x|v〉, and the Hamiltonian has the

components H(x, x′) = 〈x|Ĥ|x′〉. In place of the sum |v〉 =
∑

k |ak〉〈ak|v〉
we then have the integral

|v〉 =

∫ +∞

−∞
dx |x〉〈x|v〉 , (8.50)

and in place of Eq. (8.49) we have

i~
∂v(x, t)

∂t
=

∫ +∞

−∞
dx′H(x, x′) v(x′, t) . (8.51)

In addition, the orthonormality condition 〈ai|ak〉 = δik (Eq. 8.9) gets re-

placed by 〈x|x′〉 = δ(x− x′). The delta distribution δ(x− x′) is defined by

requiring that for any continuous function f(x),

∫ x2

x1

dx δ(x − x0)f(x) = f(x0) , (8.52)

where x1 < x0 < x2.
5

As it stands, however, Eq. (8.51) is inconsistent with the special theory

of relativity (Chap. 6). The problem is that the left-hand side depends

on the time rate of change of v for a single value of x, while the right-

hand side depends on the simultaneous value of v for every value of x. The

instantaneous action at a distance implied by this dependence is not possible

in a relativistic world. The remedy is to include a delta distribution in the

definition of the Hamiltonian: H(x, x′) = δ(x − x′) Ĥ. Because H(x, x′)
may depend on how v(x, t) changes locally, across infinitesimal intervals, Ĥ

may contain differential operators with respect to x. Hence the hat: Ĥ is

still an operator, albeit one acting on the function v(x, t) rather than one

acting on the vector |v〉. Equation (8.51) now takes the acceptable form

i~
∂v(x, t)

∂t
= Ĥ v(x, t) . (8.53)

Problem 8.33. Write down the Hamiltonians for Eq. (4.4) and Eq. (7.21).

5For further discussion of the delta distribution see Marchildon (2002, Sec. 5.9.1) or
Peres (1995, Sec. 4.7).
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8.13 The rules of the game derived at last

The origin of the two rules formulated in Sec. 5.1, one of which led us to the

Schrödinger equation via the Feynman route, is now readily understood.

Suppose that a maximal test performed at the time t1 yields the out-

come |u〉〈u|, or u for short, and that we want to calculate the probability

with which a maximal test performed at the time t2 > t1 yields the outcome

w. Assume that at some intermediate time t another maximal test is made,

and that its possible outcomes are vi (i = 1, . . . , n). Because a maximal

test “prepares from scratch,” as we have seen in Sec. 8.11, the joint proba-

bility p(w, vi|u) with which the intermediate and final tests yield vi and w,

respectively, given the initial outcome u, is the product of two probabili-

ties: the probability p(vi|u) of vi given u, and the probability p(w|vi) of w
given vi. By Born’s rule (8.32), this is

p(w, vi|u) = |〈w|vi〉〈vi|u〉|2. (8.54)

The probability of w given u, regardless of the intermediate outcome, is

given by Rule A: first take the absolute squares of the amplitudes Ai =

〈w|vi〉〈vi|u〉, then add the results:

pA(w|u) =
∑

i

p(w, vi|u) =
∑

i

|〈w|vi〉〈vi|u〉|2. (8.55)

If no intermediate measurement is made, we have pB(w|u) = |〈w|u〉|2, and
if we insert the identity operator Î =

∑

i |vi〉〈vi|, we obtain

pB(w|u) =
∣
∣
∣
∣
∣

∑

i

〈w|vi〉〈vi|u〉
∣
∣
∣
∣
∣

2

. (8.56)

In other words, first add the amplitudes Ai, then take the absolute square

of the result.
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The classical forces: Effects

9.1 The principle of “least” action

Let us return to the propagator for a stable scalar particle (Eq. 7.13):

〈rB , tB |rA, tA〉 =
∫

DC e(i/~)
∫

C
dS. (9.1)

The path integral sums contributions from all timelike paths that start at

rA at the time tA and end at rB at the time tB . Why only timelike paths?

Actually there is no law that excludes other paths. Such paths exclude

themselves, as it were.

To see how, consider again a free particle, and suppose that C has a

spacelike segment ∆C. In this case we have that ds2 < 0 for all infinitesimal

segments dC that make up ∆C. The integral
∫

∆C ds is therefore imaginary.

This means that the amplitude e(i/~)
∫

C
ds contains the factor e(i/~)

∫

∆C
ds,

which has a real exponent. This factor (and hence the amplitude) either

blows up or falls off exponentially with (roughly) the distance between the

endpoints of ∆C. If the propagator is to yield finite probabilities, it must

fall off exponentially. As a result, spacelike (“superluminal”) propagation

is exponentially suppressed. It is not impossible, but it is very unlikely,

except over very short distances.

What then is the probability of finding that the particle has traveled

from spacetime point (rA, tA) to spacetime point (rB , tB) via a specific path

C0? Since the magnitude of Z[C] = e(i/~)
∫

C
ds is the same for all paths from

(rA, tA) to (rB , tB), this probability seems to be the same for all paths. It

is, however, strictly impossible to ascertain, by any kind of measurement or

sequence of measurements, that a particle has traveled via a definite path.

We obtain a more useful answer if we make the half realistic assumption

that what can be ascertained is whether a particle has traveled from (rA, tA)

to (rB , tB) inside a narrow bundle of paths.

101
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Imagine a narrow “tube” T filled with paths from (rA, tA) to (rB , tB).

The probability of finding that the particle has traveled from (rA, tA) to

(rB , tB) inside T is (formally) given by the absolute square of the path

integral

IT =

∫

T
DC e(i/~)S[C], (9.2)

which sums over the paths from (rA, tA) to (rB , tB) that are contained

in T . We shall assume that there is a single path from (rA, tA) to (rB , tB)

for which the action S[C] is stationary : it does not change under small

variations of this path.1 Since the action differential dS defines a spacetime

geometry (Sec. 7.1), this is the same as assuming that there is a single

geodesic G connecting (rA, tA) with (rB , tB). (A geodesic is a path G that

is either longer or shorter than all paths that have the same endpoints as G
and lie in a sufficiently small neighborhood of G.)

If we further assume that G lies inside T , then there is a neighborhood

N of G inside T such that the phases S[C]/~ of the paths contained in N
are almost equal to that of G. As a result, the sum of the corresponding

phase factors e(i/~)S[C] is of considerable magnitude, and so is the path

integral IT . This is illustrated by the almost straight chain of arrows in

Fig. 9.1, which represent the almost equal phase factors contributed by the

paths inside N .

If G does not lie inside T , and if the differences between the phases of

the paths contained in T are sufficiently large, the magnitude of the sum

of the corresponding phase factors e(i/~)S[C] will be minute by comparison.

This is illustrated by the coiled chain of arrows in Fig. 9.1.

How large is “sufficiently large”?

For a free and stable particle, whose action is given by S[C] = −
∫
mc2ds

(Eq. 7.5), “sufficiently large” translates to “sufficiently large mass.” In

the limit m → ∞, the only paths that contribute to IT are those in the

infinitesimal neighborhood of G.
For a stable particle moving under the kind of influence that is repre-

sented by the potentials V and A (Eq. 7.8), the relevant theoretical limit

is the classical limit ~→ 0. In this limit, it is safe to assume that a particle

traveling from (rA, tA) to (rB , tB) travels via G, as classical physics asserts.

A classical particle follows a geodesic of the geometry defined by the action

differential dS. If dS is given by Eq. (7.8), the resulting differential geom-

etry is of a type known as Finsler geometry (Antonelli et al., 1993; Rund,

1969).
1This assumption ensures that a unique path is obtained in the classical limit.
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Fig. 9.1 The almost straight chain of arrows represents the almost equal phase factors
contributed by the paths inside a narrow bundle that contains the geodesic G. The coiled
chain of arrows represents the phase factors contributed by the paths inside a narrow
bundle that does not contain G.

If we are dealing with a system that has N degrees of freedom, the

configuration of the system is equivalent to a point in an N -dimensional

configuration space, and the propagator sums contributions from all paths

in the system’sN+1-dimensional configuration spacetimeM that lead from

a point P1 to a point P2:

〈P2, t2|P1, t1〉 =
∫

DC e(i/~)S[C]. (9.3)

(P1 specifies the values of all degrees of freedom at the time t1, and P2 does

the same for t2.) In the classical limit, this system too follows a geodesic
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of the geometry defined by dS—i.e., a path G in M whose action S[G]
is stationary under small variations of G. Although G does not have to

minimize the action (it might maximize it instead), the principle that lies

at the roots of classical physics is often referred to as the “principle of least

action.”

9.2 Geodesic equations for flat spacetime

Let us now take a spacetime path C leading from spacetime point A to

spacetime point B and vary it in such a way that every point (r, t) of C
gets displaced to a point (r + δr, t + δt) except for the fixed end points:

δt = 0 and δr = 0 at both A and B.

In what follows we must take care to distinguish between the duration

dt associated with an infinitesimal path segment dC and the variation δt of

the time component of a point on C. If we write t1 and t2 for the endpoints

of dt, it is easy to see that the variation of C changes dt into dt+ d δt:

dt = t2−t1 → (t2+δt2)−(t1+δt1) = (t2−t1)+(δt2−δt1) = dt+d δt . (9.4)

By the same token, dr→ dr + d δr. The corresponding variation of dS is

dS(t, r, dt, dr) → dS(t+ δt, r + δr, dt+ d δt, dr + d δr) . (9.5)

Expanding the variation of dS to first order in the differentials and using

the following shorthand notations,

∂ dS

∂r
· δr =

∂ dS

∂x
δx+

∂ dS

∂y
δy +

∂ dS

∂z
δz ,

∂ dS

∂ dr
· d δr =

∂ dS

∂ dx
d δx+

∂ dS

∂ dy
d δy +

∂ dS

∂ dz
d δz , (9.6)

we obtain

dS(t, r, dt, dr) +
∂ dS

∂t
δt+

∂ dS

∂r
· δr +

∂ dS

∂ dt
d δt+

∂ dS

∂ dr
· d δr . (9.7)

The difference between the varied and the original path elements, accord-

ingly, is

δdS =
∂ dS

∂t
δt+

∂ dS

∂r
· δr +

∂ dS

∂ dt
d δt+

∂ dS

∂ dr
· d δr . (9.8)
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We now use the product rule (Eq. 3.13),

d

[
∂ dS

∂ dt
δt

]

=

[

d
∂ dS

∂ dt

]

δt+
∂ dS

∂ dt
d δt , (9.9)

d

[
∂ dS

∂ dr
· δr
]

=

[

d
∂ dS

∂ dr

]

· δr +
∂ dS

∂ dr
· d δr , (9.10)

to replace the partial derivatives with respect to dt and dr:

δ dS =
∂ dS

∂t
δt+

∂ dS

∂r
· δr + d

[
∂ dS

∂ dt
δt

]

−
[

d
∂ dS

∂ dt

]

δt

+ d

[
∂ dS

∂ dr
· δr
]

−
[

d
∂ dS

∂ dr

]

· δr . (9.11)

Integrating over C, we obtain the variation of S[C]:

δS[C] =

∫

C

[(
∂ dS

∂t
− d ∂ dS

∂ dt

)

δt+

(
∂ dS

∂r
− d ∂ dS

∂ dr

)

· δr
]

+

∫

C
d

[
∂ dS

∂ dt
δt+

∂ dS

∂ dr
· δr
]

. (9.12)

The second integral only depends on the endpoints of C, at which δt = 0 and

δr = 0. It therefore vanishes. If C is a geodesic, the action is stationary, so

that δS[C] vanishes, too. The first integral then vanishes as well. Moreover,

since this vanishes for all possible variations δt and δr along C, its integrand

itself vanishes. The bottom line is that the geodesics defined by dS satisfy

the geodesic equations

∂ dS

∂t
= d

∂ dS

∂ dt
, (9.13)

∂ dS

∂r
= d

∂ dS

∂ dr
. (9.14)

9.3 Energy and momentum

If we look at these equations, what jumps out at us right away is that if

dS has no explicit time-dependence (i.e., ∂ dS/∂t = 0), then the system’s

energy

E
Def
= −∂ dS

∂ dt
(9.15)

is constant along geodesics—the paths that classical systems follow in their

configuration spacetimes. (We’ll get to the reason for the negative sign in
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a moment.) Likewise, if dS has no explicit dependence on the components

of r (i.e., ∂ dS/∂r = 0), then the system’s momentum

p
Def
=

∂ dS

∂ dr
(9.16)

is constant along geodesics.

E tells us how much the projection dt of a segment dC of a path C onto

the time axis contributes to S[C], and p tells us how much the projection dr

of dC onto space—the hyperplane spanned by the space axes—contributes

to S[C]. If dS has no explicit time dependence, then equal intervals of

the time axis make equal contributions to S[C]: they are physically equiv-

alent : they represent equal durations. If dS has no explicit dependence on

any space coordinate, then equal intervals of the space axes make equal

contributions to S[C]: they are physically equivalent : they represent equal

distances.

The take-home message here is that energy is defined as the physical

quantity whose constancy warrants the physical equivalence of equal time

intervals, often called the “homogeneity of time,” while momentum is de-

fined as the physical quantity whose constancy warrants the physical equiv-

alence of equal space intervals, often called the “homogeneity of space.” If

energy and/or momentum is/are not conserved, so that equal intervals of

the time and/or space axis are not physically equivalent, the reason could

be either that the system is not freely moving—an external influence ren-

ders quantitatively equal intervals physically inequivalent—or that we are

using the wrong coordinates: coordinates that give rise to fictitious forces.

More can be discovered by differentiating Eq. (7.7) with respect to u.

For the left-hand side we obtain

d(dS)

du
=

∂ dS

∂(u dt)

∂(u dt)

∂u
+

∂ dS

∂(u dr)
· ∂(u dr)

∂u
=

∂ dS

∂(u dt)
dt+

∂ dS

∂(u dr)
· dr ,

while the right-hand side comes out equal to dS. If we now set u = 1 and

use definitions (9.15) and (9.16), we arrive at

−E dt+ p · dr = dS . (9.17)

Since dS is a 4-scalar, the left-hand side, too, has to be a 4-scalar. Fur-

thermore, since (c dt, dr) are the components of a 4-vector, the left-hand

side has to be the scalar product of two 4-vectors. The second 4-vector,

(E/c,p), is the particle’s energy–momentum or 4-momentum. The reason

why we defined E and p with opposite signs should now be clear.
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Problem 9.1. If ds =
√

dt2 − dr · dr/c2, then

∂ ds

∂ dt
=

1
√

1− v2/c2
and

∂ ds

∂ dr
= − v/c2

√

1− v2/c2
.

Plugging the action differential of Sec. 7.2,

dS = −mc2 ds− qV (t, r) dt+
q

c
A(t, r) · dr , (9.18)

into the definitions (9.15) and (9.16) of E and p, we find that

E =
mc2

√

1− v2/c2
+ qV , (9.19)

p =
mv

√

1− v2/c2
+
q

c
A . (9.20)

Both E and p are thus made up of a kinetic part and a potential part. The

kinetic parts EK and pK are those containing the root; the potential parts

are EP = qV and pP = (q/c)A.

Problem 9.2. The kinetic parts of (9.19) and (9.20) satisfy the relation

E2 − p2c2 = m2c4 . (9.21)

Problem 9.3. Use the Taylor series to show that

(

1− v2

c2

)−1/2

= 1 +
1

2

v2

c2
+

3

8

v4

c4
+ · · · . (9.22)

Expanding the kinetic parts of (9.19) and (9.20) and dropping all terms

having c in the denominator, we obtain the non-relativistic expressions

E = mc2 +
m

2
v2, p = mv . (9.23)

Because the term mc2 amounts to the presence of a (physically irrelevant)

constant potential, it can be dropped.

9.4 Vector analysis: Some basic concepts

We already encountered the gradient of a function f(x, y, z)—a vector

∂f/∂r whose components are

∂f

∂x
,
∂f

∂y
,
∂f

∂z
. (9.24)
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The “vector” ∂/∂r, whose components are the differential operators

∂

∂x
,
∂

∂y
,
∂

∂z
, (9.25)

is useful in a variety of ways. The product

dr · ∂
∂r

, (9.26)

for example, is a machine that accepts a function f(x, y, z) and returns

the difference between the respective values of f at the points (x + dx,

y + dy, z + dx) and (x, y, z):

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz . (9.27)

Problem 9.4. The integral of a gradient along a curve C only depends on

the endpoints of C.

9.4.1 Curl and Stokes’s theorem

Another useful application of the operator ∂/∂r is the curl of a vector field

A(x, y, z), abbreviated to curl A and defined by

∂

∂r
× A =

(
∂Az

∂y
− ∂Ay

∂z

)

x̂ +

(
∂Ax

∂z
− ∂Az

∂x

)

ŷ +

(
∂Ay

∂x
− ∂Ax

∂y

)

ẑ .

(9.28)

To uncover its significance, we calculate the circulation of A along a closed

curve C. This is given by the line integral
∮

A · dr along C. (A line integral

along a closed curve is also called a loop integral.)

Let’s start with the boundary of an infinitesimal rectangle with cor-

ners A = (0,−dy/2,−dz/2), B = (0, dy/2,−dz/2), C = (0, dy/2, dz/2),

and D = (0,−dy/2, dz/2). The contributions from the four sides are,

respectively,

AB : +Ay(0, 0,−dz/2) dy = +

(

Ay(0, 0, 0)− ∂Ay

∂z

dz

2

)

dy ,

BC : +Az(0,+dy/2, 0) dz = +

(

Az(0, 0, 0) +
∂Az

∂y

dy

2

)

dz ,

CD : −Ay(0, 0,+dz/2) dy = −
(

Ay(0, 0, 0) +
∂Ay

∂z

dz

2

)

dy ,

DA : −Az(0,−dy/2, 0) dz = −
(

Az(0, 0, 0)− ∂Az

∂y

dy

2

)

dz . (9.29)
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Fig. 9.2 Illustration of Stokes’s theorem.

They add up to
(
∂Az

∂y
− ∂Ay

∂z

)

dy dz =

(
∂

∂r
× A

)

x

dy dz . (9.30)

The next step is to represent our infinitesimal rectangle by a vector dΣ per-

pendicular to the rectangle and having a magnitude equal to the rectangle’s

area dy dz. This leaves us with two possible orientations. By convention,

the orientation of dΣ is determined by another right hand rule: stick out

your right thumb and curve the other fingers of your right hand. If the

curved fingers indicate the direction of integration along the rectangle’s

boundary, the thumb indicates the orientation of dΣ.

Thus we may write the circulation (9.30) as curl A · dΣ. Now we take

some finite surface Σ (Fig. 9.2) and divide it into infinitesimal rectangles like

the one just discussed. (We cannot divide any old surface into finite rect-

angles, but keeping in mind the limit indicated by the word “infinitesimal,”

we can divide it into infinitesimal rectangles.) The sum of the circulations

of all those infinitesimal rectangles is given by the surface integral
∫

Σ

curl A · dΣ .

A glance at Fig. 9.2 informs us that the adjacent sides of neighboring rect-

angles contribute with opposite signs, since they are integrated over in

opposite directions. Their contributions to the surface integral thus can-

cel out and only the contributions from the boundary ∂Σ of Σ survive.
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The bottom line:
∫

Σ

∂

∂r
× A · dΣ =

∮

∂Σ

A · dr . (9.31)

This is Stokes’s theorem.

Problem 9.5. The loop integral of a gradient vanishes.

Hence by Stokes’s theorem,
∫

Σ

(
∂

∂r
× ∂f

∂r

)

· dΣ = 0 . (9.32)

Because this holds for every surface Σ, the curl of a gradient vanishes

identically:

∂

∂r
× ∂f

∂r
≡ 0 . (9.33)

9.4.2 Divergence and Gauss’s theorem

Yet another useful application of the operator ∂/∂r is the divergence of a

vector field B(x, y, z), abbreviated to div B and defined by

∂

∂r
·B =

∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
. (9.34)

To uncover its significance, we take an infinitesimal rectangular cuboid

of volume dx, dy, dz and calculate the net outward flux of B through its

surface. The flux of a vector field B through a surface element dΣ is given

by B · dΣ.

There are three pairs of opposite sides. The net flux through the sides

perpendicular to the x axis is

Bx(x+ dx, y, z) dy dz −Bx(x, y, z) dy dz =
∂Bx

∂x
dx dy dz . (9.35)

Ditto for the remaining pairs of sides. The net flux of B out of d3r therefore

equals
(
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

)

dx dy dz =
∂

∂r
·B d3r . (9.36)

Now we take some finite region R of space and divide it into infinitesimal

rectangular cuboids like the one just discussed. The sum of the fluxes out

of all those cuboids is given by the volume integral
∫

R
div B d3r. Notice

that the common sides of each pair of neighboring cuboids contribute twice

with opposite signs—the flux out of one equals the flux into the other. This
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means that their contributions to the volume integral cancel out and only

the contributions from the boundary ∂R of R survive. The bottom line:
∫

R

∂

∂r
·B d3r =

∫

∂R

B · dΣ . (9.37)

This is Gauss’s law.

In the special case that B is the curl of a vector field A, Gauss’s law

and Stokes’s theorem imply that
∫

R

∂

∂r
· ∂
∂r
×A d3r =

∫

∂R

∂

∂r
×A · dΣ =

∮

∂∂R

A · dr . (9.38)

On the right-hand side we integrate over the boundary ∂∂R of the boundary

∂R of R. But a boundary—in this case the closed surface ∂R—has no

boundary. The loop integral therefore vanishes, and we end up with
∫

R

∂

∂r
· ∂
∂r
×A d3r = 0 . (9.39)

Because this holds for every region R, the divergence of a curl vanishes

identically:

∂

∂r
· ∂
∂r
×A ≡ 0 . (9.40)

Here are two useful identities involving both the curl and the divergence:

dr×
(
∂

∂r
×A

)

=
∂

∂r

(

A · dr
)

−
(

dr · ∂
∂r

)

A , (9.41)

∂

∂r
×
(
∂

∂r
×A

)

=
∂

∂r

(
∂

∂r
·A
)

−
(
∂

∂r
· ∂
∂r

)

A . (9.42)

9.5 The Lorentz force

Equation (9.20) allows us to write the geodesic equation (9.14) in this form:

dpK +
q

c
dA =

∂ dS

∂r
. (9.43)

The left-hand side equals

dpK +
q

c

[
∂A

∂t
dt+

(

dr · ∂
∂r

)

A

]

. (9.44)

With dS given by Eq. (9.18), the right-hand side equals

−q ∂V
∂r

dt+
q

c

∂

∂r

(

A · dr
)

. (9.45)
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Making use of the identity (9.41), we cast this into the form

−q ∂V
∂r

dt+
q

c

[(

dr · ∂
∂r

)

A + dr×
(
∂

∂r
×A

)]

. (9.46)

When we put both sides together, two terms cancel, and we end up with

dpK = q

(

−∂V
∂r
− 1

c

∂A

∂t

)

dt+ dr× q

c

(
∂

∂r
×A

)

. (9.47)

The terms in brackets are known as the electric field E and the magnetic

field B, respectively:

E
Def
= −∂V

∂r
− 1

c

∂A

∂t
, B

Def
=

∂

∂r
×A . (9.48)

Equation (9.47) thus reduces to

dpK = qE dt+ dr× q

c
B . (9.49)

A transparent result! As a classical charged particle travels along the seg-

ment dG of a geodesic of the geometry defined by the action differential

(9.18), its kinetic momentum changes as described by two terms, one linear

in the temporal component dt of dG, the other linear in the spatial compo-

nent dr of dG. The change in the particle’s kinetic momentum associated

with the projection of dG onto the time axis is parallel to the electric field

and proportional to its magnitude, while the change in pK associated with

the projection of dG onto space is perpendicular to both dr and the mag-

netic field (in compliance with the right hand rule) and proportional to the

magnitude of the latter.

The transparency of this result is often obscured by dividing it by dt:2

dpK

dt
= qE +

q

c
v ×B . (9.50)

According to the Lorentz force law, as this form of Eq. (9.49) is known, the

time-rate of change of pK is the effect of two forces, an electric force qE

and a magnetic force (q/c)v ×B.

It certainly is not easy to free ourselves from the primitive notion of

force, which we derive from certain bodily sensations, like those associated

with pushing and pulling. It ought to be clear, though, that such a notion

can have little to do with the physical concept of force. When we look at the

Lorentz force law, what we see is an equation by which we can calculate

the time rate of change of the kinetic momentum of a charged particle
2Reminder: we are using the Gaussian system of units. In SI units the factor 1/c is

absorbed into the definition of A.
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Fig. 9.3 If the action of the path A → B → C is less than that of the path A → D → C,

the geodesic from A to C—the path with the least action—is curved as indicated. Note
that curvature in a spacetime plane amounts to acceleration or deceleration.

given the values of the computational tools E and B. What we do not see

is anything justifying the interpretation of the right-hand side as a physical

agent that causes the particle’s kinetic momentum to change. In the next

chapter we will look for the causes of the effects discussed in the present

chapter. What we will not find is any physical mechanism or process by

which these causes produce their effect. In particular, we will not find any

justification for the classical story according to which the electromagnetic

field physically implements the causal links between these causes and their

effects.

9.5.1 How the electromagnetic field bends geodesics

A simple illustration of how the electromagnetic field relates to the (Finsler)

geodesics associated with a charged particle should make it clear that we

are dealing with a calculational tool rather than a physical agent.

Imagine a finite rectangle Q in the y–z plane, like that on the right of

Fig. 9.3. By Stokes’s theorem (Eq. 9.31), the magnetic flux through Q,
∫

Q
B ·dΣ, equals the circulation

∮

∂Q
A ·dr of A around Q. This circulation

is proportional to the action associated with the closed path A → B →
C → D → A, which can also be interpreted as the difference between the

respective actions associated with the paths A→ B → C and A→ D → C.

If there is no electromagnetic field (in the equations), the two actions are

equal, and the geodesic from A to C is a straight line. If there is a magnetic

field (i.e., if the circulation of A around Q does not vanish), the two actions
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differ: one path is longer than the other (in terms of the geometry defined

by the potentials V and A). As a result, the geodesic from A to C is curved.

If A→ D → C is longer than A→ B → C, then the shortest path from A

to C is closer to A→ B → C than to A→ D → C.

Next, imagine an infinitesimal rectangle in the x–t plane, with corners

A = (−t/2,−dx/2, 0, 0), B = (dt/2,−dx/2, 0, 0), C = (dt/2, dx/2, 0, 0),

and D = (−dt/2, dx/2, 0, 0). Let us calculate the circulation around it of

the potential part −qV dt+(q/c)A ·dr of the action differential (9.18). The

contributions from the four sides are, respectively,

AB : −qV (0,−dx/2, 0, 0) dt = −q
(

V (0, 0, 0, 0)− ∂V

∂x

dx

2

)

dt ,

BC : (q/c)Ax(dt/2, 0, 0, 0) dx = (q/c)

(

Ax(0, 0, 0, 0) +
∂Ax

∂t

dt

2

)

dx ,

CD : qV (0, dx/2, 0, 0) dt = q

(

V (0, 0, 0, 0) +
∂V

∂x

dx

2

)

dt ,

DA : −(q/c)Ax(−dt/2, 0, 0, 0) dx = −(q/c)

(

Ax(0, 0, 0, 0)− ∂Ax

∂t

dt

2

)

dx ,

and they add up to

q

(
∂V

∂x
+

1

c

∂Ax

∂t

)

dt dx = −qEx dt dx . (9.51)

If we now add the circulations associated with the infinitesimal rectangles

that make up a finite rectangle Q, like that on the left of Fig. 9.3, we

again find that contributions from adjacent sides cancel (cf. Sec. 9.4.1). As

a result, the circulation of the action around Q is given by the integral

−q
∫

QEx(t, r) dt dx.

This circulation can again be interpreted as the difference between the

respective actions associated with the paths A→ B → C and A→ D → C.

If there is no electromagnetic field (in the equations), these actions are

equal, and the geodesic from A to C is a straight line. Because we are now

dealing with a spacetime plane containing the time axis, this means that

the particle travels with a constant speed. If there is an electric field (i.e.,

if the circulation of the action around Q does not vanish), the two actions

differ: one path is longer than the other (again, in terms of the geometry

defined by V and A). As a result, the geodesic from A to C is curved.

In a plane containing the time axis, this means that the particle’s speed

changes; the particle is accelerating or decelerating.
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9.6 Curved spacetime

So far in this chapter we have been concerned with the most straightforward

way of formulating effects on the motion of a (scalar) particle, regardless

of their causes. This consisted in adding to the action differential for a

free particle a term that is linear in both dt and dr, and it led to the

differential geometry defined by (9.18). The latter describes all so-called

electromagnetic effects on the motion of a (scalar) particle, both quantum-

mechanically, via propagators, and classically, in terms of the curvature of

geodesics.

There is one more way of incorporating effects on the motion of a (scalar)

particle. It is to unfix the spacetime geometry implicit in the action dif-

ferential for a free particle, dS = −mc2 ds. To implement this possibility,

we begin by recasting the scalar product (6.53) of two 4-vectors into the

following form:

(~a,~b) =

3∑

i=0

3∑

k=0

gik a
ibk. (9.52)

The vector components are labeled by superscript indices running from 0

to 3—for example, (at, ax, ay, az) = (a0, a1, a2, a3)—and the numbers gik

are as follows:






g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33







=







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1






. (9.53)

When liberated from the specific values on the right-hand side, these num-

bers form the components of a pseudo-Riemannian metric—“Riemannian”

because this metric is at the heart of the differential geometry originally

formulated by Bernhard Riemann, and “pseudo” because even its “flat”

form (given by the right-hand side of Eq. 9.53) is non-Euclidean, owing to

the different signs of the diagonal terms. Because the scalar product (9.52)

of two 4-vectors is symmetric, (~a,~b) = (~b,~a), we can require that the metric

components be symmetric, too: gik = gki.

The metric is a machine with two input slots. If we insert into both

slots the infinitesimal 4-vector with components (dx0, dx1, dx2, dx3) =

(c dt, dx, dy, dz), we obtain (recalling Eq. 6.45) the 4-scalar

3∑

i=0

3∑

k=0

gik dx
i dxk = c2 dt2 − dr · dr = c2 ds2 . (9.54)
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If we adopt the convention (due to Einstein) that equal spacetime indices

occurring twice (once as subscript and once as superscript) are summed

automatically, without having to write those bulky summation symbols,

we can substitute gik dx
i dxk for c2 ds2, and we can cast the action differ-

ential for a particle subject to such effects as are represented by a pseudo-

Riemannian geometry, into the form

dS = −mc
√

gik dxi dxk . (9.55)

9.6.1 Geodesic equations for curved spacetime

By allowing the metric components gik to differ from spacetime point to

spacetime point, we make room for another kind of influence on the motion

of a particle, regardless of what is exerting it. Its effects will again be

mathematically expressed as modifications of the actions associated with

spacetime paths, and classical particles will again follow the geodesics of

the corresponding differential geometry.

The geodesic equations for the geometry defined by (9.55) can be ob-

tained in much the same way we obtained the geodesic equations (9.13)

and (9.14) for the geometry defined by the action differential (9.18). [For

the details, the reader may consult Landau and Lifshitz (1975).] Here is

the result:

d2xi

ds2
+ Γi

kl

dxk

ds

dxl

ds
= 0 . (9.56)

The symbols

Γi
kl

Def
=

1

2
gim

(
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl

∂xm

)

(9.57)

are the so-called connection coefficients, also known as “Christoffel sym-

bols.” (Superscript indices in denominators are to be treated like subscript

indices in numerators.)

9.6.2 Raising and lowering indices

Before we can enter into the physical meaning of the geodesic equations

(9.56), we need to know how covariant components (having subscript in-

dices) are transformed into contravariant components (having superscript

indices), and vice versa. The covariant components of a 4-vector are defined

by

ai
Def
= gik a

k . (9.58)
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This tells us how to lower indices. Identical indices on different sides of an

equation can be raised or lowered simultaneously. Thus ai = gi
k a

k. This

tells us that

gi
k =

{
0 if i 6= k

1 if i = k
. (9.59)

(Because of the symmetry of the metric, gi
k can be read either as gi

k or as

gk
i.) The definition (9.58) allows us to cast Eq. (9.52) into the simple form

(~a,~b) = akb
k. (9.60)

By the symmetry of the scalar product, akb
k = akbk. This holds for any

matching pair of indices: the covariant index can be raised if the contravari-

ant index is lowered at the same time. Thus we also have that

ai = gik ak . (9.61)

This tells us how to raise indices.

9.6.3 Curvature

The curvature of a 2-dimensional surface (such as the surface of the sphere

in Fig. 9.4) is readily detected by us since we have the luxury of a conscious-

ness capable of visualizing 3-dimensional objects. But how do we detect the

curvature of a 3-dimensional hypersurface if we do not have the luxury of a

consciousness capable of visualizing 4-dimensional objects? Or how do we

detect the curvature of a 3-dimensional structure if this is not embedded in

a 4-dimensional space? And, harder still, how do we detect the curvature

of 4-dimensional spacetime?

Put yourself in the (2-dimensional) shoes of a flatlander.3 You live in

a 2-dimensional world and cannot leave it; you cannot imagine a third

dimension perpendicular to your own two. How can you find out whether

your world is curved?

Here is a possible test: draw a circle and measure its circumference C;

draw a diameter of the circle and measure its length D; take the ratio C/D.

If it differs from π, your world is curved. If it is smaller than π, you may

live on the surface of a sphere (Fig. 9.4). If it is larger than π, you may live

on a saddle-shaped surface.

3Flatland: A Romance of Many Dimensions is an 1884 satirical novella by the English
schoolmaster Edwin A. Abbott. In a foreword to one of its many publications, Isaac Asi-
mov wrote that it was “the best introduction one can find into the manner of perceiving
dimensions.”
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Fig. 9.4 Detecting the curvature of a surface without leaving it.

Another possible test: construct a triangle and measure its angles. If

the sum of the angles differs from 180◦, your world is curved. (Each of the

angles of the triangle in Fig. 9.4 equals 90◦, which makes a total of 270◦.)

9.6.4 Parallel transport

Let us place the initial point (“tail”) of a vector A at a corner of the triangle

in Fig. 9.4, in such a way that A is tangent on one of the triangle’s sides

meeting at that corner. Let’s call this side “S1.” Being straight, the entire

vector—from its initial point to its terminal point (“head”)—cannot lie on

the sphere or inside its surface. It resides in a tangent space that we—but

not the flatlanders—are able to visualize as a plane touching the sphere at

a single point.

We want to transport A along S1 in such a way that it remains parallel

to itself. How do we do this? To find the answer, we should keep three

things in mind:

(1) if we parallel-transport a vector V along a straight line L, and if V is

initially tangent on L, V remains tangent on L;

(2) in the presence of curvature, a geodesic is the next best thing to a

straight line;
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(3) the sides of a triangle on the surface of a sphere are geodesics. (This is

part of what “triangle” means on the surface of a sphere.)

We shall accordingly make it part of what “parallel transport” means on

the surface of a sphere that geodesics parallel transport their tangent vec-

tors. For (2-dimensional) surfaces, a more general statement holds: if V

is parallel transported along a geodesic G, and if T is a co-moving tangent

vector on G originating at the tail of V , the angle between V and G remains

constant.

Thus when A (in Fig. 9.4) reaches the other end of S1, it is equal

to B; when subsequently parallel transported along the second side of the

triangle, it becomes equal to C, and if it is then parallel transported along

the third side, it becomes equal toD. This illustrates another manifestation

of curvature: if a vector is parallel transported along a closed curve, so that

it returns to its starting point and remains parallel to itself all along the

way, it will yet, in general, point in a different direction than it did at the

outset.

In 4-dimensional spacetime we can perform an analogous test. To find

out if spacetime is warped, we may transport gyroscopes, initially pointing

in the same direction, along different routes from a common starting point A

to a common end point B. In a curved spacetime, they generally won’t point

in the same direction when they meet again at B.

To find out more, let ~v be a vector field in spacetime. We wish to know

the difference D~v between ~v(P) and ~v(P ′) if the spacetime points P and

P ′ are separated by an infinitesimal vector with components dxk. Because

the two vectors are situated in different tangent spaces—flat spacetimes

“touching” curved spacetime at the respective points P and P ′—we need

to take into account that the basis vectors of these tangent spaces may

differ. If they are the same, the components of the two vectors simply

differ by

Dvi = dvi =
∂vi

∂xl
dxl. (9.62)

If they are not the same, a compensatory term must be added. Because P
and P ′ are an infinitesimal distance apart, this term will be linear in the

components vi and dxk . Thus

Dvi = dvi + Γ
i

klv
kdxl =

(
∂vi

∂xl
+ Γ

i

klv
k

)

dxl. (9.63)

Now suppose that P and P ′ are the endpoints of an infinitesimal segment

dG of a geodesics G, and that ~u is a tangent vector on G located at P . Let us
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use a specific tangent vector, the 4-velocity ui = dxi/c ds. (Here we conform

to the convention of referring to a 4-vector ~v by a generic component vi.)

Problem 9.6. ui = dxi/c ds satisfies uiu
i = 1.

Because geodesics parallel transport their tangent vectors, there will be no

difference between ui(P) and ui(P ′):

Dui = dui + Γ
i

klu
kdxl = 0 . (9.64)

Divide by ds to find that

d2xi

ds2
+ Γ

i

kl

dxk

ds

dxl

ds
= 0 . (9.65)

Both Eq. (9.56) and Eq. (9.65) characterizes the geodesics of the geometry

defined by the action differential (9.55). The former defines them as the

curves that minimize (or maximize) their actions, whereas the latter defines

them as the curves that parallel transport their tangent vectors. Since the

two equations are therefore identical, Γ
i

kl is given by Eq. (9.57)

A useful abbreviation,

vi
;l

Def
=

∂vi

∂xl
+ Γ i

klv
k , (9.66)

allows us to write Dvi = vi
;l dx

l for the covariant derivative (9.63).

9.7 Gravity

While the geodesics defined by Eqs. (9.14) and (9.18) describe the classi-

cal effects of what history has led us to call “the electromagnetic force,”

the geodesics defined by Eq. (9.56) describe the classical effects of what

history has led us to call “the gravitational force” or “gravity.” One

crucial difference between the corresponding geometries is that the for-

mer is particle-specific: it depends, through Eq. (9.18), on the masses

and the charges of the particles affected. Equation (9.56), by contrast,

is universal. It contains no particle-specific parameters, and for this

reason it is customary to attribute the latter geometry to spacetime

itself.

As we shall see in Part 3, quantum mechanics provides sufficient ground

for rejecting the notion of an intrinsically differentiated and intrinsically

structured spacetime. For the moment, however, I shall confine myself

to illustrating that the mathematical description of gravitational effects in
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Fig. 9.5 The spacetime curvatures of the trajectories of a ball and of a bullet near the
Earth’s surface.

terms of a universal spacetime geometry is not as counterintuitive as it

might seem at first. To this end we will estimate the spacetime curvatures

of two trajectories observed near the Earth’s surface:

• A ball is thrown so that it rises to a height of about h1 = 5 m, covers

a distance of 10 m, and hits the ground after 2 seconds.

• A bullet is fired so that it rises to a height of about h2 = 5× 10−4 m,

covers the same distance, and hits the ground after 0.02 seconds.

In space the curvatures of these trajectories are obviously very different, but

not in spacetime. The distances traveled in spacetime are essentially the

times of travel multiplied by the speed of light, i.e., d1 = 2c = 6× 108m for

the ball and d2 = 0.02 c = 6× 106m for the bullet (Fig. 9.5). According to

Pythagoras, the radius of curvature r is related to the parameters h and d

via (r−h)2+(d/2)2 = r2. Because h� d < r, we ignore the term quadratic

in h and obtain r = d2/8h. This works out at r = 9× 1015 m ≈ 1 light year

for both the ball and the bullet.
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The classical forces: Causes

10.1 Gauge invariance

Problem 10.1. (∗) Adding (q/c) df(t, r) to the action differential dS in-

duces the following transformation of the propagator (9.1):

〈rB , tB|rA, tA〉 → e(i/~)(q/c) f(tB ,rB)〈rB , tB|rA, tA〉 e−(i/~)(q/c) f(tA,rA) .

(10.1)

It follows that Eq. (7.12),

ψ(rB, tB) =

∫

d3rA 〈rB , tB|rA, tA〉ψ(rA, tA) ,

is invariant under the transformation (10.1), provided that this is combined

with the phase transformation

ψ(t, r)→ e(i/~)(q/c) f(t,r)ψ(t, r) . (10.2)

Problem 10.2. (∗) Adding (q/c) df(t, r) to the action differential dS given

by Eq. (7.8) is equivalent to the following transformation of the potentials:

V → V − 1

c

∂f

∂t
, A→ A+

∂f

∂r
. (10.3)

In classical physics, one refers to (10.3) as a gauge transformation. In

quantum physics, one usually understands by this term the combination of

(10.3) with (10.2).

Problem 10.3. The electric and magnetic fields (Eq. 9.48) are invariant

under the transformation (10.3).

123
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10.2 Fuzzy potentials

The task now before us is to link to their causes the effects that we

have just learned to describe in mathematical language. What, then,

are their causes? Here we cannot proceed further without making spe-

cific assumptions. The causes could include minds, spirits, elves, gob-

lins—what have you. Goblins appear to have been at work at the LHC,

but otherwise we just don’t know. We shall simply assume that we

are dealing with particles and nothing but particles and that, therefore,

the behavior of particles (including their aggregates) is affected by noth-

ing but particles (including their aggregates). We shall however keep

an open mind as to the nature of the things we call “particles” and

“aggregates.”

So far we have assumed that the potentials V (t, r) and A(t, r) have exact

values. Yet particles are fuzzy : neither their positions nor their momenta

are in possession of exact values. If these potentials represent effects that

particles have on particles, their values cannot be sharp. Fuzzy causes have

fuzzy effects.

So how do we make room for fuzzy potentials? In much the same way

that we made room for fuzzy particles! In the case of a single particle, this

meant calculating the propagator 〈r2, t2|r1, t1〉 by summing over spacetime

paths leading from (r1, t1) to (r2, t2). For a system with N degrees of

freedom, this meant calculating the propagator 〈P2, t2|P1, t1〉 by summing

over paths from a point (P1, t1) to a point (P2, t2) in the system’s N+1-

dimensional configuration spacetime (Eq. 9.3). Presently we are dealing

with a mathematical device that allows us to calculate effects of a partic-

ular type. This device—the 4-potential ~A = (V,A)—has a denumerably

infinite number of degrees of freedom and a configuration space with as

many dimensions. The configuration A obtaining at the time t specifies

the components of ~A associated with each point r in the 3-dimensional

hyperplane associated with t.1

To make room for fuzzy potentials, we thus calculate the propagator

〈A2, t2|A1, t1〉 by summing over all paths leading from a given configuration

1Like the real line or the complex plane, this hypersurface forms a non-denumerable
set. How can the configuration of A be specified by a denumerable set of values? The
answer is that we take ~A to be well-behaved in the sense spelled out in Sec. 3.3. Just as
a well-behaved function of a single variable x can be fully specified by a countable set
of parameters—for instance, the coefficients of its Taylor series—so can a well-behaved
4-vector field.
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A1 (obtaining at the time t1) to a given configuration A2 (obtaining at t2):

〈A2, t2|A1, t1〉 =
∫

DC e(i/~) SA[C]. (10.4)

10.2.1 Lagrange function and Lagrange density

To find the appropriate action SA[C], we begin by observing that the action

differential dS(t, r, dt, dr) associated with an infinitesimal segment of a

spacetime path can be cast into the form

dS = L(t, r,v) dt . (10.5)

To see this, we only have to substitute 1/dt for the parameter u in Eq. (7.7).

The immediate result is

dS(t, r,v) =
dS(t, r, dt, dr)

dt
.

But now the notation is no longer appropriate, for the left-hand side, having

ceased to depend on infinitesimal quantities, has itself ceased to be an

infinitesimal quantity. In its place we write L(t, r,v). L is known as a

Lagrange function.

Problem 10.4. (∗) Write down the Lagrange function for the action dif-

ferential (7.8).

The homogeneity of dS expressed by Eq. (7.7) allowed us to interpret dS as

defining a differential geometry. If we interpret dSA as defining a differential

geometry in the configuration spacetime of the potentials, then we also have

that

dSA = LA(A, dA/dt) dt . (10.6)

Consistency with special relativity, however, requires that the four dimen-

sions of spacetime be treated on an equal footing (apart from the sign

difference in Eq. 6.45). This means that SA must be expressible as an

integral over spacetime, rather than as an integral over time only:

SA =
1

c

∫

LA(Ak, ∂Ak/∂xi) d4x . (10.7)

The Lagrange density LA (also known simply as the Lagrangian) is a

4-scalar, and d4x stands for the 4-volume element (c dt) dx dy dz.

In classical physics, the potentials serve to connect physical effects with

their physical causes, but only as calculational tools. Given the causes, we

calculate the potentials, and given the potentials, we calculate the effects.
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Since the effects are represented by gauge-invariant combinations of the

potentials (E and B), it makes sense to require that the causes determine

only these combinations. We therefore require that LA, too, be invariant

under the transformation (10.2).2 If we further require that the effects

that charges have on charges are additive, in the sense that the combined

effect of two charges A and B on a third charge is the (vectorial) sum of

the individual effects produced by A and B, then we are left with a single

candidate, the Lagrangian

LA =
1

8π
(E2 −B2) . (10.8)

10.3 Maxwell’s equations

As the fundamental equation of classical electrodynamics are formulated in

terms of a current rather than in terms of particles, we replace the charge q

in Eq. (9.18) by a charge density ρ and integrate over space as well:

SAM = −
∫

(qV − q

c
A · dv) dt −→ − 1

c2

∫

(cρV −A · j) d4x . (10.9)

The current density j = ρv denotes the flow of charge per unit area per

unit time.

We have omitted SM = −mc2ds, the term in Eq. (9.18) that does not

contain the potentials. When we established how the classical trajectories

of charged particles depend on the potentials, we took the values of the

potentials as given. We therefore had no need to include SA. Presently

we wish to determine how E and B depend on the distribution and mo-

tion of particles (represented, respectively, by ρ and j). Since the distri-

bution and motion of particles is now taken as given, we do not need to

include SM.

To streamline our task, we define the tensor components

Fik =
∂Ak

∂xi
− ∂Ai

∂xk
, (10.10)

the components Ak of ~A being given by (V,Ax, Ay, Az). (Tensor compo-

nents like Fik transform like a product of vector components CiDk.)

2There is a deeper reason for this requirement: it makes quantum electrodynamics
renormalizable (Sec. 15.8).
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Problem 10.5.
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0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0






. (10.11)

If in addition we introduce the 4-current ~J with components Jk =

(cρ, jx, jy, jz), we can write the relevant action more compactly as

SAM + SA = − 1

c2

∫ (

AkJ
k +

c

16π
FikF

ik
)

d4x . (10.12)

Problem 10.6. This is the same as

− 1

c2

∫

(cρV −A · j) d4x+
1

8πc

∫

(E2 −B2) d4x . (10.13)

If δ(SAM + SA) is to vanish under any infinitesimal variation δAk of the

potentials, we must have that
∫ [

(δAk) Jk +
c

8π
(δFik)F ik

]

d4x = 0 . (10.14)

Here we have made use of δ(FikF
ik) = 2(δFik)F ik, which holds for much

the same reason as dx2 = 2x dx. Because the antisymmetry of Fik (i.e.,

Fik = −Fki) allows us to write

F ik(δFik) = 2F ik ∂ δAk

∂xi
, (10.15)

Eq. (10.14) becomes
∫ [

(δAk) Jk +
c

4π
F ik ∂ δAk

∂xi

]

d4x = 0 . (10.16)

Integrating by parts, we obtain
∫

F ik ∂ δAk

∂xi
d4x =

∫
∂

∂xi

(

F ik δAk

)

d4x−
∫
∂F ik

∂xi
δAk d

4x . (10.17)

The 4-dimensional version of Gauss’s law (9.37) allows us to convert the

first integral on the right-hand side into an integral over a spatiotemporal

boundary. At the spatial “boundary” (infinity) the potentials—at any rate,

their gauge-invariant combinations—are assumed to vanish, and at the tem-

poral boundaries the configurations A1 and A2 are fixed (δA1 = δA2 = 0).

This integral therefore equals zero, so Eq. (10.14) takes the form
∫ (

Jk − c

4π

∂F ik

∂xi

)

δAk d
4x = 0 . (10.18)



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

128 The World According to Quantum Mechanics

Thus if SAM + SA is to be stationary for every (infinitesimal) variation

δAk, the potentials must satisfy the condition

∂F ik

∂xi
=

4π

c
Jk. (10.19)

Problem 10.7. Equation (10.19) is equivalent to

∂

∂r
· E = 4πρ ,

∂

∂r
×B =

1

c

∂E

∂t
+

4π

c
j . (10.20)

This is the second pair of Maxwell’s equations. The first pair,

∂

∂r
·B = 0 ,

∂

∂r
×E = −1

c

∂B

∂t
, (10.21)

follows from the definitions (9.48) of E and B and the identities (9.33) and

(9.40). Together with the Lorentz force law (9.50), these four equations

make up the set of fundamental equations of the classical electromagnetic

theory.

The following problem illustrates that electricity and magnetism are two

sides of the same coin: what counts as a magnetic effect if one reference

frame is used, may count as an electric effect if a different frame is used,

and vice versa.

Problem 10.8. (∗) Consider a long current-bearing wire. Situated near the

wire is a charged particle. Described in terms of one inertial frame (F1),

the particle is at rest. Described in terms of another inertial frame (F2),

the particle moves parallel to the wire with a constant speed. In F2, the

particle experiences a force according to the magnetic term of the Lorentz

force law. In F1, this term vanishes, so the force acting on the particle must

be due to the electric term. What is the source of E in this frame?

10.3.1 Charge conservation

Problem 10.9. (∗) Use Eq. (10.19) to show that

∂Jk

∂xk
= 0 . (10.22)

In 3-vector notation this reads:

∂ρ

∂t
= − ∂

∂r
· j . (10.23)
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Integrating both sides over a spatial region R with an unmoving boundary

∂R, we obtain

∂Q(R)

∂t
=

∂

∂t

∫

R

ρ d3r = −
∫

R

∂

∂r
· j d3r = −

∫

∂R

j · dΣ . (10.24)

On the far right we made use of Gauss’s law (9.37). Equation (10.24) tells

us that the rate at which the charge Q(R) inside R increases equals minus

the rate at which charge flows outward across the boundary ∂R of R. It is,

in other words, a statement of the conservation of charge. Equation (10.23)

is known as an equation of continuity.

10.4 A fuzzy metric

Our next task is to link the effects of gravity to their causes. Once again

we assume that we are dealing with particles and nothing but particles

and that, therefore, the behavior of particles (including their aggregates) is

affected by nothing but particles (including their aggregates).

So far the components gik of the metric have been taken to be in posses-

sion of exact values. Yet, again, particles are fuzzy : neither their positions

nor their momenta are in possession of exact values. If the metric represents

effects that particles have on particles, its components cannot be sharp.

But now we run into a problem. As long as the metric is sharp, its

components can be treated as functions of spacetime points, at least in our

mathematical imagination. If the metric becomes fuzzy, so do the distances

between spacetime points. But it is distances that are physically accessible,

not spacetime points per se. Physically meaningful locations are defined

by the distances between them. If spacetime distances become fuzzy, it

becomes inconsistent to define the metric over a set of points that is locally

isomorphic with a set of quadruplets of real numbers—points that can be

labeled by spacetime coordinates. Physicists have not yet learned how to

successfully circumnavigate this conundrum. Perhaps this is the reason—or

at least one of the reasons—why we do not have a renormalizable quantum

theory of gravity yet.

Since the present theory’s lack of renormalizability does not prevent us

from expressing the fuzziness of the metric in terms of path integrals, we

can again use the principle of least action to obtain the classical theory.

Assuming that the particles and the potentials follow fixed paths in their

respective configuration spacetimes, we look for the conditions in which the

action is stationary under arbitrary infinitesimal variations of the metric.
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To be able to do so, we need a gravity term analogous to the term (10.7):

SG =
1

c

∫

L(gik, ∂gik/∂xl)
√−g d4x . (10.25)

In the presence of the metric, the volume element is given by
√−g d4x. g is

the determinant of the metric, which is given by

g = εijkl g0i g1j g2k g3l , (10.26)

where

εijkl =







+1 if ijkl is an even permutation of 0123

−1 if ijkl is an odd permutation of 0123

0 if ijkl is not a permutation of 0123

(10.27)

As it turns out, there is no 4-scalar that can be constructed from the compo-

nents of the metric and their first derivatives. But there is just one 4-scalar

that additionally depends on the components’ second derivatives. This is

equal to the sum of two terms, one that depends on the components gik and

their first derivatives only, and one that can be converted into an irrelevant

boundary integral—irrelevant for reasons analogous to those given in the

paragraph following Eq. (10.17). This is the curvature scalar

R Def
= gjlRjl = Rl

l , (10.28)

which is a contraction of the Ricci tensor

Rjl
Def
= gikRijkl = Rk

jkl , (10.29)

which in turn is a contraction of the Riemann (curvature) tensor

Ri
jkl

Def
=

∂Γi
jl

dxk
−
∂Γi

jk

dxl
+ Γi

mkΓm
jl − Γi

mlΓ
m
jk . (10.30)

In Gaussian units, the wanted gravity term is therefore

SG =
c3

16πG

∫

R√−g d4x , (10.31)

where G = 6.674× 10−11 m3 kg−1s−2 is Newton’s gravitational constant.

10.4.1 Meaning of the curvature tensor

Imagine a quadrilateral whose sides are the infinitesimal vectors dui and

dvj . Take a vector Ak and parallel transport it about this quadrilateral—

first along dui, then along dvj , then along −duk, and finally along −dvl.

The resultant change in Ai is given by

δAi = −Ri
klm Ak dul dvm. (10.32)
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In other words, Ri
klm is a machine with three inputs and one output.

Insert the two sides of the quadrilateral into the last two input slots; insert

a vector that is transported about the quadrilateral into the first input slot;

get (minus) the resultant change of this vector.

10.4.2 Cosmological constant

In the weak-curvature limit, the action (10.31) yields Newton’s law of grav-

ity. It we do not regard this as necessary, the above constraints on the form

of the gravity term allow for the addition of a constant to the curvature

scalar R. The resulting action is usually written in this form:

SG =
c3

16πG

∫

(R− 2Λ)
√−g d4x . (10.33)

Λ is the so-called cosmological constant. According to recent astronomical

observations, it is small but not zero. Einstein originally introduced it to

allow for the possibility of a static universe. After the discovery, by Ed-

win Hubble, that the universe was in fact expanding, Einstein dismissed it

as “the greatest blunder” of his life. Today the cosmological constant is

seen as the most likely reason why the expansion of the universe is accel-

erating rather than slowing down, as one would expect from the mutual

gravitational attraction of the known forms of matter.

10.5 Einstein’s equation

The total action is now given by the sum SG + SM, where

SM =
1

c

∫

LM
√−g d4x . (10.34)

LM is a function of the matter variables and their first derivatives. (“Mat-

ter” now stands for everything but the metric.) The classical equations that

state the metric’s dependence on the distribution and motion of matter are

obtained by varying the metric while the matter variables are held fixed.

The result is the Einstein equation,

Rik −
1

2
Rgik + Λgik =

8πG

c4
Tik , (10.35)

which is to Einstein’s theory of gravity—the general theory of relativity—

what Maxwell’s equations are to classical electrodynamics. The tensor Tik
depends on the specific form of LM.
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10.5.1 The energy–momentum tensor

In much the same way as Eq. (10.19) implies the conservation law (10.22)

(Problem 10.9), Eq. (10.35) implies the conservation law

T ik
;k = 0 . (10.36)

The latter, however, only holds locally. If we chose a spacetime point

and a sufficiently small neighborhood containing it, we can (within this

neighborhood) use inertial coordinates, so that (within this neighborhood)

Eq. (10.36) takes the form of an equation of continuity—or, rather, four of

them, one for each index i:

∂T ik

∂xk
= 0 . (10.37)

The conservation of the right-hand side of Eq. (10.19) and the conservation

of the right-hand side of Eq. (10.35) both are implied by the respective

left-hand sides of these equation. There is however another reason why the

tensor Tik on the right-hand side of Eq. (10.35) is (locally) conserved: the

matter action (10.34) can be shown to be invariant under transformations

of the metric that are locally equivalent to spacetime translations. This

justifies the identification of Tik in Eq. (10.35) with the energy–momentum

tensor of matter.

10.6 Aharonov–Bohm effect

Let us return to the two-slit experiment we discussed in Secs. 5.2–5.3. The

interference term contained the factor cos(k∆) (Eq. 5.3), where ∆ stood

for DR−DL, the difference between the distances of the detector from the

slits. Because the electron source is equidistant from the slits, ∆ is also the

difference between the lengths of the paths G→ L→ D and G→ R→ D.

We will call these paths L and R, respectively.

If the electron is subject to effects of the type that is represented by the

vector potential A, then (by Eq. 7.8) the phase associated with L contains

the additional term

q

c~

∫

L
A · dr , (10.38)

and the phase associated with R contains the additional term

q

c~

∫

R
A · dr . (10.39)
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Fig. 10.1 The vector potential and the magnetic field associated with a current bearing

solenoid.

The difference between these terms is an integral over the loop G → L →
D → R→ G,

q

c~

∫

L
A · dr− q

c~

∫

R
A · dr =

q

c~

∮

A · dr Def
= φ . (10.40)

If a vector potential is present (in the equations), the interference term thus

contains the factor cos(k∆ + φ). Invoking Stokes’s theorem (Eq. 9.31) and

the definition of the magnetic field (Eq. 9.48), we find that the integral of

A along that loop equals the flux of B through any surface Σ bounded by

it:
∮

A · dr =

∫

Σ

B · dΣ . (10.41)

What happens if a long, thin solenoid passes through the loop G → L →
D → R → G, at a right angle to the plane containing the loop, such that

there is a clear distance between it and the loop? If a current is flowing in

the solenoid, then there is—on paper— a magnetic field (Fig. 10.1), and if

there is no electric field (or only a static one), then, according to Maxwell’s

equations (10.20), the curl of this magnetic field is related to the density of

the current via

∂

∂r
×B =

4π

c
j . (10.42)
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The magnetic field outside the solenoid can be made arbitrarily weak by

making the solenoid sufficiently long. Essentially, therefore,

φ =
q

c~

∫

Σ

B · dΣ . (10.43)

Because φ depends on the current flowing in the solenoid, the interference

pattern observed under the conditions stipulated by Rule B can be shifted

to the left or to the right by altering the strength and/or the direction of

the current.

This effect could easily have been predicted in the late 1920’s, by which

time all the necessary physics was in place. Yet by many accounts it was

predicted only three decades later, by Aharonov and Bohm (1959).3

10.7 Fact and fiction in the world of classical physics

Why did it take that long to predict such a remarkable effect? It is no excuse

that classical electrodynamics can be formulated exclusively in terms of E

and B, nor that the four components of V and A, which uniquely determine

the six components of E and B, are themselves not unique (Sec. 10.1). For

it was well known that the Schrödinger equation could accommodate elec-

tromagnetic effects only in terms of the potentials V and A (see Eq. 7.23),

and that loop integrals of A were gauge-invariant. Why was it neverthe-

less a widely held view that the potentials “have no physical meaning and

are introduced solely for the purpose of mathematical simplification of the

equations” [Rohrlich (1965)]?

What is implied by Rohrlich’s remark is that E and B have a kind of

physical meaning that the potentials lack. The general idea at the time

was that the electromagnetic field is a physical entity in its own right; it is

locally acted upon by charges, it locally acts on charges, and it mediates the

action of charges on charges by locally acting on itself. At the heart of this

notion is the so-called “principle of local action,” felicitously articulated by

DeWitt and Graham (1971) in an American Journal of Physics resource

letter:

Physicists are, at bottom, a naive breed, forever trying to come to terms
with the “world out there” by methods which, however imaginative and
refined, involve in essence the same element of contact as a well-placed
kick.

3Actually it was first predicted two decades later [Ehrenberg and Siday (1949)], but it
made a splash only after the publication of the paper by Aharonov and Bohm. This was
followed by an actual demonstration of the effect in less than a year.
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With the notable exception of Roger Boscovich, a Croatian physicist and

philosopher who flourished in the 18th Century, it does not seem to have

occurred to anyone that local action is as unintelligible as the apparent

ability of material objects to act where they are not, which the principle of

local action has purportedly explained away.4

If it is believed that electromagnetic effects on charges are locally pro-

duced by E and B, rather than at a distance by the distribution and motion

of charges, then something like the Aharonov–Bohm effect cannot be fore-

seen, for neither E nor B is significantly different from zero along the two

alternative electron paths. The lesson we have learned (or ought to have

learned) from the history of this effect is that neither the potentials nor

the fields should be thought of as physical entities in their own right. They

both are computational tools.

What about gravitational effects? Here, too, the objects acted upon

follow the geodesics of a differential geometry, and the consequences of

being acted upon are represented by the curvature of this geometry. In

the electromagnetic case, the curvature depends not only on the objects

that act but also on the objects that are acted upon, through their masses

and charges. In the gravitational case, the curvature is independent of

the objects acted upon. Does this warrant the reification of the geometry

representing gravitational effects? Or is it simply an instance of what math-

ematician and philosopher A.N. Whitehead (1997) has called “the fallacy

of misplaced concreteness”?

Remember how we got to this point. We were looking for propagators for

particles acted upon by particles. We found two mathematical constructs

that could be used to incorporate into the propagators of particles the effects

that particles have on particles—the 4-potential (V,A) and the metric. To

take into account the fuzziness of the particles acted upon, we summed over

paths in their configuration spacetime. To take into account the fuzziness of

the potentials and the metric, we summed over paths in their configuration

spacetimes. We then obtained the laws of classical physics by taking the

classical limit—the limit in which the fuzziness that “fluffs out” matter

disappears and a single extremal path survives (for the particles as well as

for the potentials and the metric). In this limit, the quantum-mechanical

4The impression that local action is intelligible derives from the familiarity of experi-
ences like pulling a rope or pushing a stalled car. Why do the pushing hands not pass
right through the car? Taking a microscopic look at what happens between the surface
of the car and the surfaces of the pushing hands, we discover that this apparently local
action involves net interatomic and intermolecular repulsive forces that act at a distance.
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probability algorithms degenerate into trivial probability algorithms, which

only assigns trivial probabilities (either 0 or 1).

A trivial probability algorithm—represented by a point in some phase

space—can be interpreted as a state in the classical sense of the word: a

collection of possessed properties (Sec. 8.1). What happens in the classical

limit, then, is that the quantum laws, which correlate the probabilities of

measurement outcomes probabilistically, degenerate into laws that correlate

intrinsically possessed properties or values deterministically. And because

deterministic correlations between intrinsically possessed properties or val-

ues lend themselves to causal interpretations, what happens is that the

quantum-mechanical algorithms, which serve to compute probabilities of

possible measurement outcomes on the basis of actual outcomes, degener-

ate into algorithms that serve to compute effects that matter has on matter.

What they do not is degenerate into descriptions of physical mechanisms

or processes by which matter acts on matter. As N. David Mermin (2009)

reminisced near the end of a distinguished career:

When I was an undergraduate learning classical electromagnetism, I was
enchanted by the revelation that electromagnetic fields were real. Far
from being a clever calculational device for how some charged particles
push around other charged particles, they were just as real as the parti-
cles themselves, most dramatically in the form of electromagnetic waves,
which have energy and momentum of their own and can propagate long
after the source that gave rise to them has vanished.

That lovely vision of the reality of the classical electromagnetic field
ended when I learned as a graduate student that what Maxwell’s equa-
tions actually describe are fields of operators on Hilbert space. Those
operators are quantum fields, which most people agree are not real but
merely spectacularly successful calculational devices. So real classical
electromagnetic fields are nothing more (or less) than a simplification in
a particular asymptotic regime (the classical limit) of a clever calcula-
tional device. In other words, classical electromagnetic fields are another
clever calculational device.

10.7.1 Retardation of effects and the invariant speed

In Newton’s theory, gravitational effects are instantaneous: the Earth is

attracted towards the Sun’s present position. It has been argued that this

was the reason why Newton could not but refuse to “frame hypotheses”

(about the mechanism by which gravity acts). Electromagnetic effects,

on the other hand, are retarded. The earliest time at which a solar flare

can affect us is about eight minutes later—the distance between the Sun



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

The classical forces: Causes 137

and the Earth divided by the speed of light. According to a widely held

belief, the retardation of electromagnetic effects is what made it possible

to understand the mechanism by which these effects are transmitted.

Looking at it in another way, we reach the opposite conclusion. In

Secs. 6.4–6.5 we established the necessity of an invariant speed. (Reminder:

anything that “travels” with this speed in one inertial frame, will do so

in every other inertial frame.) In Newton’s theory the invariant speed is

infinite; in a relativistic theory it is finite. But regardless, what matters is

the existence of an invariant speed, inasmuch as it implies the existence of a

special kind of spatiotemporal relation between events: simultaneity, which

is absolute in Newton’s case, or the lightlike relation, which is absolute in

the relativistic case.

Suppose that an event e1 at (r1, t1) is the cause of an event e2 at (r2, t2).

The fact that e2 happens at t2, rather than at any other time, has two pos-

sible explanations, depending on whether the causal connection between

the events is mediated or unmediated. In the mediated case, t2 is deter-

mined by the speed of mediation. This could be the speed of a material

object traveling from r1 to r2, or the speed of a signal propagating in an

elastic medium, or something more exotic. In the unmediated case, t2 can

only be determined by the special spatiotemporal relation that is implied

by the existence of an invariant speed. In Newton’s theory, t2 is equal to t1,

while in a relativistic theory, t2 is given by t1 + |r2−r1|/c. A delay of e2 by

t2−t1 = |r2−r1|/c thus ought to be seen as the signature of an unmediated

causal connection between e1 and e2, rather than as an indication that the

causal relation between e1 and e2 is mediated by some physical process.

Again, in a non-relativistic theory, in which the stratification of space-

time into hypersurfaces of constant time (“simultaneities”) is absolute, en-

ergy and momentum are globally conserved: the total energy is the same in

all simultaneities, as is the total momentum. In a relativistic theory, where

the stratification of spacetime into simultaneities is frame-dependent, the

law of conservation of energy–momentum holds for every stratification. En-

ergy and momentum must therefore, in some sense, be locally conserved.5

5In a relativistic theory, energy–momentum cannot disappear in one place and instantly
re-appear in a different place, inasmuch as this would only hold with respect to one frame
or class of frames. Described using a different frame, it would re-appear not only in a
different place but also at a different time, so that energy-momentum would not even be
globally conserved.
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But in what sense? Like every local conservation law, the conserva-

tion of energy–momentum is a feature of the mathematical tools we em-

ploy to calculate the correlations between measurement outcomes—both

the probabilistic correlations of quantum physics and the deterministic cor-

relations of classical physics. For instance, it ensures that in all particle

“collision” experiments, and regardless of the reference frame used, the

total energy–momentum of the incoming particles equals the total energy–

momentum of the outgoing particles. (If some energy–momentum escapes

undetected, then the following conditional is warranted: if the escaped

energy–momentum were detected, it would agree with the local conserva-

tion law.)

But why give a thought to the meaning of the approximate laws of

classical physics, considering that “philosophically we are completely wrong

with the approximate law,” as Richard Feynman stressed at the beginning

of his famous Caltech lectures [Feynman et al. (1963), original emphasis]?

While learning the classical laws, most students of physics absorb a con-

siderable amount of metaphysical embroidery that does not bear scrutiny

in light of the underlying quantum laws. If this embroidery is not seen for

what it is and discarded in time, it needlessly frustrates students’ efforts

to make sense of quantum physics. Mermin (2009) was able to rid himself

of “our habit of inappropriately reifying our successful abstractions,” but

how many of us are?
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Quantum mechanics resumed

11.1 The experiment of Elitzur and Vaidman

In the following experiment [Elitzur and Vaidman (1993)] a Mach–Zehnder

interferometer will be used. This consists of two beam splitters (BS1
and BS2), two mirrors (M1 and M2), and two photodetectors (D1 and D2)

arranged as in Fig. 11.1. A particular twist of this experiment is the possi-

ble presence of a “bomb”—a photodetector that will explode if it absorbs

a photon. For simplicity’s sake we make the usual assumption that all

detectors (including the bomb) are 100% efficient.

Imagine, to begin with, that neither BS2 nor the bomb is present. A

photon beam enters BS1 from the left. Classically described, two beams

emerge, each with half the intensity of the incoming beam. Described in

quantum-mechanical terms, each photon has a 50% chance of being detected

by D1 (indicating that the photon was reflected upward by BS1) and an

equal chance of being detected by D2 (indicating that the photon went

horizontally through BS1).

If BS2 (but as yet no bomb) is present, Rule B applies. Here is what we

need to know about the amplitudes associated with the alternatives (reflec-

tion by M1 or reflection by M2): they are equal except that each reflection

causes a phase shift of π/2. (The magnitude of the phase shift depends on

the materials used. For the sake of convenience, we use materials for which

it equals π/2.) Such a phase shift is equivalent to the inclusion of a factor i.

Each of the alternatives leading to D1 involves two reflections, so the

corresponding amplitudes are equal (i2A, say). The probability of detection

by D1 thus is p
B
1 = |−A−A|2 = 4|A|2. The alternative leading to D2 via M1

involves three reflections, so that the corresponding amplitude has an extra

factor i3 = −i. The alternative leading to D2 via M2 involves a single

139
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Fig. 11.1 “Bomb testing” experiment of Elitzur and Vaidman.

reflection, and the corresponding amplitude has an extra factor +i. Because

the two amplitudes differ by a factor −1, the probability of detection by

D2, p
B
2 , equals 0. (Under the conditions stipulated by Rule A, we would

have that pA
1 = pA

2 = 2|A|2.)
Finally, if both BS2 and the bomb are present, the alternative taken by

the photon is measured. If the bomb explodes, we can conclude that the

photon went via M1, and if it does not explode, we can conclude that the

photon went via M2. If it went via M2, either photodetector responds with

probability 1/2. Thus:

• If the bomb is absent, D1 clicks every time (100%), and D2 never clicks

(0%).

• If the bomb is present, it explodes half of the time (50%), and if it

doesn’t explode, D1 and D2 are equally likely to respond (25% each).

Problem 11.1. Suppose that the bomb is present. Is it possible, with the

help of the present setup, to ascertain the presence of the bomb without

setting it off? Ponder this before you proceed.

The answer is affirmative, albeit only in 25% of the tests. If the bomb

explodes, which happens in 50% of the tests, we have failed. If the bomb
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is present and D1 responds, which happens in 25% of the tests, we have

learned nothing, for D1 also responds if the bomb is absent. But if D2

responds, which happens in 25% of the tests, we have succeeded, for D2

never responds if the bomb is absent.

When a version of this experiment was demonstrated at a science fair in

Groningen, the Netherlands, in 1995 [du Marchie van Voorthuysen (1996)],

the reactions of non-physicists differed markedly from those of physicists.

Everyone was perplexed, for the detection of the photon by D2 seems to

have contradictory implications:

• The bomb was present.

• The photon never came near the bomb.

If the photon never came near the bomb, how was it possible to learn

that the bomb was present? While most ordinary folks thought that some

physicist will eventually solve this puzzle, the physicists themselves were

decidedly less hopeful that a satisfactory explanation will be found.

11.2 Observables

Many students of quantum mechanics are more or less apodictically in-

formed that observables are self-adjoint operators, and that the possible

values of an observable are its eigenvalues. These statements would be

virtually self-evident if they were accompanied by sufficient emphasis on

the probabilistic nature of the mathematical tools of quantum mechanics,

which is rarely the case.

Consider a measurement whose possible outcomes are represented by

projectors |vk〉〈vk|, k = 1, 2, . . . . If the density operator is Ŵ, the corre-

sponding probabilities are 〈vk|Ŵ|vk〉, and their mean value is

〈v〉 =
∑

k

vk〈vk|Ŵ|vk〉 . (11.1)

If the density operator is pure, Ŵ = |w〉〈w|, the probabilities are

〈vk|w〉 〈w|vk〉 = 〈w|vk〉 〈vk|w〉, and their mean value is

〈v〉 = 〈w|V̂|w〉 with V̂ =
∑

k

|vk〉vk〈vk| . (11.2)

Remembering the spectral theorem (8.30), we conclude that V̂ is self-

adjoint, that the vectors |vk〉 are its eigenvectors, and that the values vk
are the corresponding eigenvalues.
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11.3 The continuous case

When dealing with continuous observables,1 it is often more convenient to

work with the position representation ψ(x) = 〈x|ψ〉 of a Dirac vector |ψ〉
than to work with the Dirac vector itself. For example, we may write the

mean value (4.14) either as

〈x〉 = 〈ψ|X̂|ψ〉 with X̂ =

∫

|x〉x 〈x| dx
or as

〈x〉 =

∫

ψ∗(x) x̂ ψ(x) dx =

∫

〈ψ|x〉 x̂ 〈x|ψ〉 dx with x̂ = x .

Using the position representation has the advantage that applying x̂ to ψ(x)

boils down to multiplying ψ(x) by x.

Another representation convenient to work with is the momentum

representation ψ(k) = 〈k|ψ〉 of a Dirac vector |ψ〉. It allows us to cast

the mean value (4.16) into the form

〈p〉 =

∫

〈ψ|k〉 p̂ 〈k|ψ〉 dk (11.3)

with p̂ = ~k. The momentum operator in the position representation has

to satisfy

〈p〉 =

∫

〈ψ|x〉 p̂ 〈x|ψ〉 dx .

We will now demonstrate with the help of Eq. (4.9) that p̂ = (~/i)(∂/∂x)

fits the bill.

〈p〉 =

∫

ψ∗(x)
~

i

∂

∂x
ψ(x) dx

=
1

2π

∫ [∫

ψ
∗
(k′, t) e−ik′xdk′

]
~

i

∂

∂x

[∫

ψ(k, t) eikxdk

]

dx

=
1

2π

∫ [∫

ψ
∗
(k′, t) e−ik′xdk′

] [∫

ψ(k, t) ~k eikxdk

]

dx

=

∫ ∫

ψ
∗
(k′, t) ~k ψ(k, t)

[
1

2π

∫

ei(k−k′)xdx

]

dk′ dk .

Because the square bracket in the last line is a way of writing the delta

distribution δ(k − k′) (Sec. 8.12.2), we end up with

〈p〉 =

∫ ∫

ψ
∗
(k′, t) ~k ψ(k, t) δ(k − k′) dk′ dk =

∫

ψ
∗
(k, t) ~k ψ(k, t) dk .

This is Eq. (11.3) with p̂ = ~k.
1It would be more correct to speak of observables whose possible measurement outcomes

form a denumerable set of mutually disjoint subsets of a non-denumerable set.
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Problem 11.2. The functions ψk(x, t) (Eq. 4.7) satisfy the “continuum

normalization”

∫

dxψ∗
k(x, t)ψk′ (x, t) = δ(k − k′) .

11.4 Commutators

Let Û and V̂ be the self-adjoint operators associated with two discrete

observables U and V . Introducing the abbreviations Ûi = |ui〉〈ui| and

V̂k = |vk〉〈vk | for the projectors representing the possible outcomes of mea-

surements of U and V , we have that

Û =
∑

i

uiÛi , V̂ =
∑

k

vkV̂k .

Introducing the commutator

[Â, B̂]
Def
= ÂB̂− B̂Â (11.4)

and inserting the above expressions, we obtain

[Û, V̂] =
∑

i

∑

k

uivk [Ûi, V̂k] . (11.5)

According to Postulate 2 (Sec. 8.7), the outcomes of compatible elemen-

tary tests correspond to commuting projectors. Each of the projectors Ûi

and V̂k represents the outcome of an elementary test. If these projectors

commute, the operators Û and V̂ commute, and (measurements of) U and

V are said to be compatible. If Û and V̂ fail to commute, (measurements

of) U and V are said to be incompatible.

Problem 11.3. (∗) [ x̂, p̂ ] = i~.

The uncertainty relation (4.18) can also be deduced from this commutator

[e.g., Marchildon (2002); McMahon (2006)].

Problem 11.4.

[Â, B̂Ĉ] = [Â, B̂] Ĉ + B̂ [Â, Ĉ] .
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11.5 The Heisenberg equation

Suppose Ô is the self-adjoint operator associated with an observable O. Let

us differentiate 〈ψ2|Ô|ψ1〉 with respect to time, making use of Eq. (8.48):

d〈ψ2|Ô|ψ1〉
dt

=
〈

− i
~
Ĥψ2

∣
∣
∣Ô
∣
∣
∣ψ1

〉

+
〈

ψ2

∣
∣
∣
∂Ô

∂t

∣
∣
∣ψ1

〉

+
〈

ψ2

∣
∣
∣Ô
∣
∣
∣− i

~
Ĥψ1

〉

=
i

~

〈

ψ2

∣
∣
∣ĤÔ

∣
∣
∣ψ1

〉

+
〈

ψ2

∣
∣
∣
∂Ô

∂t

∣
∣
∣ψ1

〉

− i

~

〈

ψ2

∣
∣
∣ÔĤ

∣
∣
∣ψ1

〉

=
〈

ψ2

∣
∣
∣
∂Ô

∂t
+
i

~
[Ĥ, Ô]

∣
∣
∣ψ1

〉

. (11.6)

Since this holds for arbitrary vectors, we are entitled to look upon the

operator sandwiched between the two vectors in the last line as the total

time derivative of Ô:

dÔ

dt

Def
=

∂Ô

∂t
+
i

~
[Ĥ, Ô] . (11.7)

This is the Heisenberg equation. We gather from it that O is a conserved

quantity if the associated operator (i) has no explicit time dependence and

(ii) commutes with the Hamiltonian Ĥ.

11.6 Operators for energy and momentum

We have yet to show that

p̂ =
~

i

∂

∂r
(11.8)

is the momentum operator for the position representation.2 We begin by

observing that a continuous transformation |ψ〉 → |ψ′〉 that leaves Born

probabilities unchanged,

|〈ψ′
2|ψ′

1〉|2 = |〈ψ2|ψ1〉|2, (11.9)

is linear and unitary [cf. Sec. 8.12.1; Peres (1995) pp. 217–220; Wigner

(1997) p. 233]. Since the infinitesimal translation |r〉 → |r + δr〉 does not

affect the probability
∣
∣
∣
∣

∫

ψ∗
2(r)ψ1(r) d

3r

∣
∣
∣
∣

2

,

2In Sec. 11.3 we showed that p̂ = (~/i)(∂/∂x) is the momentum operator for the
position representation if p̂ = ~k is the same for the momentum representation. The fol-
lowing proof confirms that p̂ = ~k is indeed the momentum operator for the momentum
representation.



December 23, 2010 10:25 World Scientific Book - 9in x 6in main

Quantum mechanics resumed 145

it is therefore effected by a unitary operator Û(δr) = 1− iÂ · δr:
〈ψ|r+ δr〉 = 〈ψ|1− iÂ · δr|r〉 = 〈ψ|r〉 − i〈ψ|Â|r〉 · δr . (11.10)

Since the components of Â are self-adjoint operators Âx, Ây, Âz, we can

use 〈ψ|Â|r〉∗ = 〈r|Â|ψ〉 to obtain the complex conjugate of Eq. (11.10):

ψ(r+ δr) = ψ(r) + i〈r|Â|ψ〉 · δr . (11.11)

We also have that

ψ(r+ δr) = ψ(r) +
∂ψ

∂r
· δr , (11.12)

so that

〈r|Â|ψ〉 = 1

i

∂ψ

∂r
. (11.13)

Using the continuum version
∫
|r〉〈r| d3r of the identity operator, we obtain

the expected value

〈ψ|Â|ψ〉 =
∫

〈ψ|r〉〈r|Â|ψ〉 d3r =
∫

ψ∗(r)
1

i

∂

∂r
ψ(r) d3r . (11.14)

If the Hamiltonian Ĥ has no explicit dependence on r—as is the case if

we are dealing with a closed system and using inertial coordinates—then it

commutes with the operator (1/i)(∂/∂r), and the corresponding observable

is conserved. In particular, if the Hamiltonian associated with a particle

has no explicit dependence on r, space is homogeneous as far as this par-

ticle is concerned. But the observable that is conserved on account of the

homogeneity of space is momentum. The momentum operator for the posi-

tion representation is thus given by Eq. (11.8). (To give it the conventional

units of momentum, we included the factor ~.)

By the same route we arrive at the energy operator for the position

representation:

Ê = i~
∂

∂t
. (11.15)

The reason for the sign difference between the two operators is the same as

that cited in Sec. 9.3.

11.7 Angular momentum

Using polar coordinates (Fig. 11.2), we can define the operator (~/i)(∂/∂φ)

in analogy with the operator (~/i)(∂/∂x). Because this operator has no ex-

plicit dependence on time, the corresponding observable is conserved if the
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Fig. 11.2 Polar coordinates.

Hamiltonian has no explicit dependence on φ and therefore commutes with

(~/i)(∂/∂φ). In particular, if the Hamiltonian associated with a particle

has no explicit dependence on φ, space is isotropic with respect to the

z axis as far as this particle is concerned. But the observable that is con-

served on account of the isotropy of space with respect to the z axis, is the

z component of angular momentum.

To return to rectangular coordinates, we evaluate

∂ψ

∂φ
=
∂ψ

∂y

∂y

∂φ
+
∂ψ

∂x

∂x

∂φ
.

Since x = r sin θ cosφ and y = r sin θ sinφ, as we gather from Fig. 11.2,

this works out at ∂ψ/∂φ = x(∂ψ/∂y)− y(∂ψ/∂x). Hence

(~/i)(∂/∂φ) = x̂ p̂y − ŷ p̂x
Def
= L̂z . (11.16)

The operators for the remaining angular momentum components are

L̂x = ŷ p̂z − ẑ p̂y , L̂y = ẑ p̂x − x̂ p̂z . (11.17)

Problem 11.5. (∗)
[L̂x, L̂y] = i~ L̂z , [L̂y, L̂z] = i~ L̂x , [L̂z, L̂x] = i~ L̂y . (11.18)

Problem 11.6. (∗) The operator L̂2 Def
= L̂x

2
+ L̂y

2
+ L̂z

2
commutes with

L̂x, L̂y, and L̂z.
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11.8 The hydrogen atom in brief

Using the time-independent Schrödinger equation (4.25) with EP = −e2/r,
we find—as one would expect from the discussion in Sec. 4.4—that bound

states exist only for specific values of E. These are exactly the values Bohr

obtained in 1913 (Eq. 2.7):

En = − 1

n2

me e
4

2~2
, n = 1, 2, 3, . . .

The influence of the electron on the proton can be taken into account by

substituting the reduced mass µ = mpme/(mp +me) for me, mp being the

proton’s mass.

If polar coordinates are used, factorizing ψ(r, φ, θ) into e(i/~) lzφ ψ(r, θ)

leads to a φ-independent Schrödinger equation and a discrete set of values

for lz, just as factorizing ψ(t, r) into e−(i/~) Et ψ(r) led to a t-independent

Schrödinger equation and a discrete set of values En. The φ-independent

Schrödinger equation contains a real parameter whose possible values are

given by l(l + 1)~2, where l is an integer satisfying the condition 0 ≤ l ≤
n−1. The possible values of lz, in turn, are integers satisfying the inequality

|lz| ≤ l. The possible combinations of the quantum numbers n, l, lz are thus

n = 1 l = 0 lz = 0
n = 2 l = 0 lz = 0

l = 1 lz = 0, ±1
n = 3 l = 0 lz = 0

l = 1 lz = 0, ±1
l = 2 lz = 0, ±1, ±2

...
...

...

The energy corresponding to the principal quantum number n is an eigen-

value of the Hamiltonian. The value l(l + 1)~2, where l is the angular

momentum (or orbital, or azimuthal) quantum number, is an eigenvalue of

L̂2. And the angular momentum component with respect to the z axis, ~ lz,

is an eigenvalue of L̂z . lz is usually called the magnetic quantum number,

hence the letter m is often used instead. The eigenfunctions ψnlm(r, φ, θ)

of these operators form a complete set of bound-state solutions (E < 0) of

the Schrödinger equation for the hydrogen atom.

As “a picture is worth more than a thousand words” (and as the relevant

mathematics is set out in great detail in many textbooks), we content our-

selves with the illustrations on the following pages. States with l = 0, 1, 2, 3

were originally labeled s, p, d, f (for “sharp,” “principal,” “diffuse,” and

“fundamental”) with a view to characterizing the corresponding spectral
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Fig. 11.3 Radial dependence of the first three spherically symmetric stationary states
of atomic hydrogen. Their quantum numbers nlm are 1s0, 2s0, and 3s0.

lines. States with higher l follow the alphabet (omitting the letters al-

ready used). Figure 11.3 maps the radial dependences of the first three

spherically symmetric stationary states, which do not depend on φ or θ.

Figures 11.4 and 11.5 plot the position probability distributions defined by

some of the stationary states that are symmetric about the z axis. Figure

11.4 emphasizes the fuzziness of these orbitals at the expense of their ro-

tational symmetry. By plotting surfaces of constant probability, Fig. 11.5

emphasizes their 3-dimensional shape at the expense of their fuzziness.

It should be stressed that what we see in these images is neither the

nucleus nor the electron but the fuzzy position of the electron relative to

the nucleus. Nor do we see this fuzzy position “as it is.” What we see is

the plot of a position probability distribution. This is defined by outcomes

of measurements determining the values of n, l, and m, and it defines a

fuzzy position by determining the probabilities of the possible outcomes of

a subsequent position measurement. (Take any region R of the imaginary

space of sharp positions relative to the proton, integrate this distribution

over R, and obtain the probability of finding the electron in R.)

Since the dependence on φ is contained in a phase factor eimφ, it cannot

be seen in plots of |ψ(r, φ, θ)|2. To make this dependence visible, it is

customary to replace eimφ by its real or imaginary part, as has been done

in Fig. 11.6.
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Fig. 11.4 The position probability distributions associated with the following orbitals.
First row: 2p0, 3p0, 3d0. Second row: 4p0, 4d0, 4f0. Third row: 5d0, 5f0, 5g0. Images
created with Orbital Viewer 1.04 by David Manthey.
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Fig. 11.5 The same position probability distributions as in Fig. 11.4 differently ren-
dered. Images created with Orbital Viewer 1.04 by David Manthey.
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Fig. 11.6 Orbitals with m 6= 0. The squares of their real parts are shown. First row:
4f1, 5f1. Second row: 5f2, 5f3. Third row: 5g1, 5g3. Fourth row: 5g3, 5g4.
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Chapter 12

Spin

12.1 Spin 1/2

In 1922, Otto Stern and Walther Gerlach found that when a narrow beam

of silver atoms is sent through an inhomogeneous magnetic field, it splits

into two beams. If the gradient of the magnetic field is oriented parallel

to the z axis (“upward”), and if the incoming beam runs parallel to the

y axis, then some atoms are deflected upward by a certain angle and the

rest are deflected downward by the same angle. The measurement of the

angle of deflection is repeatable: if the atoms in the upper (lower) beam

are made to pass through a second, identical apparatus, all of them are

deflected upward (downward).

Let the unit vectors |z+〉 and |z−〉 stand for the possible outcomes of

this measurement, in lieu of the projectors |z+〉〈z+| and |z−〉〈z−|. Repre-

senting different outcomes of the same measurement, the two vectors are

orthogonal, and corresponding to a complete set of possible outcomes, they

form a basis in a 2-dimensional vector space. For reasons that will soon

become clear, we refer to the property whose value is indicated by this

measurement as “the z component of the atom’s spin.”

The gradient of the magnetic field can of course point in any direction.

If it is parallel to the x axis, we are set to measure the x component of

the atom’s spin. Its possible values are represented by the vectors |x+〉 and
|x−〉. A different complete set of mutually orthogonal unit vectors, they

form another basis in this 2-dimensional space of spin states. By Born’s

rule, the probability of obtaining the outcome |z+〉 after having obtained

the outcome |x+〉 (and made sure that no external influence has affected

the probabilities of the possible outcomes in the meantime) is |〈z+|x+〉|2.

153
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According to a common phraseology, the first measurement prepares the

atom in the state |x+〉, with the result that subsequently the atom is in

this state. Expressions of this sort are seriously misleading. For one thing,

a quantum state is a probability algorithm, and a physical system cannot

be “in” a probability algorithm.

Let us send the atoms in the upper beam through an apparatus that is

identical to the first except that it is rotated by an angle α about the z axis.

We shall denote by |z′′+〉 and |z′′−〉 the possible outcomes of a measurement

made with this apparatus. Since the two apparatuses measure the same spin

component, the probabilities |〈z′′+|z+〉|2 and |〈z′′−|z−〉|2 are equal to unity,

and the probabilities |〈z′′−|z+〉|2 and |〈z′′+|z−〉|2 are zero. The amplitude

〈z′′+|z+〉 is thereby determined up to a phase factor.

Problem 12.1. (∗) If 〈z′′+|z+〉 = eiφ then |z′′+〉 = e−iφ|z+〉.

Our next move is to interpose a third measurement of the z component of

the atom’s spin, using an apparatus that is rotated relative to the first by

an angle α/2 about the z axis. The corresponding outcomes are |z ′+〉 and

|z′−〉. If this intermediate measurement is not made, then by Rule B we

have that

〈z′′+|z+〉 = 〈z′′+|z′+〉〈z′+|z+〉+ 〈z′′+|z′−〉〈z′−|z+〉 . (12.1)

But we also have that |〈z′−|z+〉|2 = |〈z′′+|z′−〉|2 = 0. This leaves us with

〈z′′+|z+〉 = 〈z′′+|z′+〉〈z′+|z+〉 or

eiφ(α) = eiφ(α/2)eiφ(α/2). (12.2)

Since the right-hand side equals ei 2φ(α/2), φ is proportional to α: 〈z′′+|z+〉 =
eibα. By the same token, 〈z′′−|z−〉 = eib′α. Because overall phase factors lack

physical significance—for at the end of the day we are left with absolute

squares of sums of amplitudes—we can see to it that

|z′′+〉 = e−ilα|z+〉, |z′′−〉 = eilα|z−〉 . (12.3)

What do we know about the value of l? For one thing, it cannot be zero.

Every vector in the space of spin states is a linear combination of |z+〉
and |z−〉. If these two vectors are not affected by a rotation about the

z axis—i.e., if |z′′+〉 = |z+〉 and |z′′−〉 = |z−〉—then no vector is affected, nor

are the probabilities of outcomes of spin measurements with respect to the

x and y axes changed. But these probabilities ought to be changed by a

rotation about the z axis.

Nor can l be equal to unity, for if it were, a rotation by π about the

z axis would change the signs of |z+〉 and |z−〉 and, consequently, those of
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all vectors. All probabilities would again remain unchanged as a result. Yet

the smallest angle of rotation that leaves all probabilities unchanged ought

to be 2π. This tells us that l equals 1/2.

Problem 12.2. With l = 1/2, a rotation by 2π about the z axis changes

the sign of every vector.

Particles with a 2-dimensional space of spin states are said to have a spin

equal to 1/2. This is the case if spin is measured in its natural units, which

are dimensionless. Although spin has no classical analogue, it is related to

angular momentum. Its conventional units are therefore those of angular

momentum (which, as you will recall, are also the conventional units of

action). In these units, the spin of a silver atom equals ~/2.

The reason why particles of spin 1/2 are of particular interest to us is

that they comprise all known constituents of “ordinary” matter—electrons

and nucleons or electrons and quarks.

12.1.1 Other bases

To find out how the vectors |x±〉 and |y±〉 are related to the vectors |z±〉,
we begin by considering the effect on |z±〉 of two successive rotations by π

about the y axis. Each rotation inverts the z axis, so only a phase factor

can appear in addition to the obvious inversions from |z±〉 to |z∓〉 and back

to |z±〉:

|z+〉
π|y−→ eiβ |z−〉

π|y−→ eiβeiγ |z+〉 ,

|z−〉
π|y−→ eiγ |z+〉

π|y−→ eiγeiβ |z−〉 .
Because a rotation by 2π changes the sign of every vector, ei(β+γ) must be

equal to −1. The convention is to set β = 0, so that eiβ = 1 and eiγ = −1:

|z+〉
π|y−→ |z−〉 , |z−〉

π|y−→ −|z+〉 . (12.4)

Equipped with this information, we now consider two consecutive rotations

by π/2 about the y axis:

|z+〉
π

2
|y−→ c |z+〉+ d |z−〉

π

2
|y−→ c2 |z+〉+ cd |z−〉+ de |z+〉+ df |z−〉 ,

|z−〉
π

2
|y−→ e |z+〉+ f |z−〉

π

2
|y−→ ec |z+〉+ ed |z−〉+ fe |z+〉+ f2 |z−〉 .

To agree with Eq. (12.4), the coefficients must satisfy the following condi-

tions:

c2 + de = 0, cd+ df = 1, ce+ ef = −1, de+ f 2 = 0 .
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The first and the last condition imply that f = c or f = −c. The second

condition pins it down to f = c and yields d = 1/2c, and the third condition

yields e = −1/2c. With these results, the first condition tells us that

c4 = 1/4, which has four solutions. We are free to choose c = 1/
√

2, and

this gives us

|z+〉
π

2
|y−→ 1√

2

[

|z+〉+ |z−〉
]

, |z−〉
π

2
|y−→ 1√

2

[

−|z+〉+ |z−〉
]

. (12.5)

12.1.2 Rotations as 2 × 2 matrices

Our next task will be to cast these rotations into matrix notation. If |1〉
and |2〉 make up a basis, any vector can be written in the form

|a〉 = a1|1〉+ a2|2〉 , (12.6)

and any linear operator Â can be given the form

Â = A11|1〉〈1|+A12|1〉〈2|+A21|2〉〈1|+ A22|2〉〈2| . (12.7)

Applying Â to |a〉 (from the left), or inserting |a〉 into Â (from the right),

and making use of the orthonormality conditions (8.9), we obtain

|b〉 Def
= Â|a〉 = (A11a1 +A12a2)|1〉+ (A21a1 +A22a2)|2〉 . (12.8)

Here is the same equation in matrix notation:
(
b1
b2

)

=

(
A11 A12

A21 A22

)(
a1

a2

)

=

(
A11a1 +A12a2

A21a1 +A22a2

)

. (12.9)

It is just another way of writing bi =
∑2

k=1 Aikak for i = 1, 2. (It would not

have escaped your notice that the dependence of the components of vectors

and matrices on a particular basis is no longer explicit in this notation.)

Problem 12.3. Aik = 〈i|Â|k〉.

Problem 12.4. (∗) 〈i|Â†|k〉 = A∗
ki.

Problem 12.5. (∗) The first column of the matrix representation of Â

contains the components of Â|1〉, the second those of Â|2〉.

With respect to the |z±〉 basis, a rotation by π about the y axis (Eq. 12.4)

is effected by

R̂(π|y) =

(
0 −1

1 0

)

, (12.10)
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while a rotation by π/2 about the y axis (Eq. 12.5) is effected by

R̂
(

π
2 |y
)

=

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)

. (12.11)

Problem 12.6. (∗) Cast the transformation (6.43) into matrix notation.

The multiplication of two N × N matrices Â, B̂ yields an N × N matrix

Ĉ = Â · B̂ whose components are defined by Cik =
∑N

j=1 AijBjk . Note

that matrices don’t commute: in general, Â · B̂ 6= B̂ · Â.

Problem 12.7. (∗) In terms of matrix components, Eq. (8.38) reads

N∑

j=1

U∗
ji Ujk = δik . (12.12)

Problem 12.8. The matrices (12.10) and (12.11) satisfy

R̂
(

π
2 |y
)
· R̂
(

π
2 |y
)

= R̂(π|y) . (12.13)

Here is the upshot of Sec. 12.1 in matrix notation:

R̂ (α|z) =

(
e−iα/2 0

0 eiα/2

)

. (12.14)

Problem 12.9. R̂(α|z) · R̂(α|z) = R̂(2α|z).

The isotropy of space argues (i) that this holds for any axis, and (ii) that

for any axis,

R̂(2π) =

(−1 0

0 −1

)

. (12.15)

Problem 12.10. The matrices (12.10) and (12.15) satisfy

R̂(π|y) · R̂(π|y) = R̂(2π) . (12.16)

Problem 12.11.

R̂
(

3
2π|y

)
=

(−1/
√

2 −1/
√

2

1/
√

2 −1/
√

2

)

. (12.17)

One does not have to look far to find the right continuous functions of α

that reproduce the components of the matrices (12.10), (12.11), (12.15),

and (12.17):

R̂ (α|y) =

(
cos(α/2) − sin(α/2)

sin(α/2) cos(α/2)

)

. (12.18)
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Fig. 12.1 A rotation by 90◦ about the x axis obtained by three consecutive rotations
about the y and z axes.

Let us use this result to calculate the probability of finding the spin of a

spin-1/2 particle “up” with respect to one axis after having found it “up”

with respect to another axis (this can only depend on the angle between

the two axes):

|〈z+|R̂ (α|y) |z+〉|2 = cos2(α/2) . (12.19)

As one would expect, this probability decreases continuously from 1 (for

α = 0) to 0 (for α = π).

To find out how to rotate spin vectors about the x axis, we begin by

performing the following sequence of rotations: first a rotation by π/2 about

the z axis, next a rotation by π/2 about the y axis, and last a rotation by

−π/2 about the z axis:
(
eiπ/4 0

0 e−iπ/4

)( 1√
2
− 1√

2

1√
2

1√
2

)(
e−iπ/4 0

0 eiπ/4

)

=

(
1√
2
− i√

2

− i√
2

1√
2

)

. (12.20)

As we gather from Fig. 12.1, the result is a rotation by π/2 about the x axis.

Problem 12.12. Verify that the product of the three matrices works out as

stated.

One also doesn’t have to look far to find the right continuous functions of α

that reproduce the components of the following matrices:

R̂
(

π
2 |x
)

(
1√
2
− i√

2

− i√
2

1√
2

)

, R̂ (π|x)
(

0 −i
−i 0

)

,

R̂
(

3
2π|x

)

(− 1√
2
− i√

2

− i√
2
− 1√

2

)

, R̂ (2π|x)
(−1 0

0 −1

)

.
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Here they are:

R̂ (α|x) =

(
cos(α/2) −i sin(α/2)

−i sin(α/2) cos(α/2)

)

. (12.21)

We are now in a position to define the basis vectors with respect to the

x and y axes by rotating |z+〉 by the appropriate angle (+π/2 or −π/2)

about the appropriate axis:

|x+〉 = R̂
(

π
2 |y
)
|z+〉 =

1√
2

[

|z+〉+ |z−〉
]

, (12.22)

|y+〉 = R̂
(
−π

2 |x
)
|z+〉 =

1√
2

[

|z+〉+ i|z−〉
]

, (12.23)

|x−〉 = R̂
(
−π

2 |y
)
|z+〉 =

1√
2

[

|z+〉 − |z−〉
]

, (12.24)

|y−〉 = R̂
(

π
2 |x
)
|z+〉 =

1√
2

[

|z+〉 − i|z−〉
]

. (12.25)

12.1.3 Pauli spin matrices

Which self-adjoint operators correspond to the three spin components of

a spin-1/2 particle? The eigenvectors of these operators are |x±〉, |y±〉,
and |z±〉, respectively, while the corresponding eigenvalues are ±1/2 (in

natural units) or ±~/2 (in conventional units). If we take the eigenvalues

to be ±1 (for “up” and “down”), the wanted operators—in matrix notation

with respect to the basis |z±〉—are the Pauli matrices :

σ̂x =

(
0 1

1 0

)

, σ̂y =

(
0 −i
i 0

)

, σ̂z =

(
1 0

0 −1

)

. (12.26)

Problem 12.13.

σ̂x|x±〉 = ±|x±〉 , σ̂y|y±〉 = ±|y±〉 , σ̂z |z±〉 = ±|z±〉 . (12.27)

Problem 12.14.

σ̂xσ̂x = σ̂yσ̂y = σ̂zσ̂z = −iσ̂xσ̂yσ̂z = 1̂
Def
=

(
1 0

0 1

)

. (12.28)

Problem 12.15.

σ̂xσ̂y = iσ̂z, σ̂yσ̂z = iσ̂x, σ̂zσ̂x = iσ̂y . (12.29)

Problem 12.16. (∗)
[σ̂x, σ̂y] = 2iσ̂z , [σ̂y, σ̂z ] = 2iσ̂x , [σ̂z , σ̂x] = 2iσ̂y . (12.30)
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When we introduced the commutator of two operators (Sec. 11.4), we con-

cluded that measurements of the corresponding observables are compatible

if and only if the operators commute. Since the operators corresponding

to different components of the same spin do not commute, different com-

ponents of the same spin are incompatible. There is no state that assigns

probability 1 to possible outcomes of measurements of more than one spin

component.

For later use we record the general form of a rotation by α about an axis

defined by the unit vector n̂ = (nx, ny, nz) [Marchildon (2002), Sec. 4.6]:

R̂(α|n̂) =

(
cos(α/2)− inz sin(α/2) −(inx + ny) sin(α/2)

(−inx + ny) sin(α/2) cos(α/2) + inz sin(α/2)

)

= exp
(

−iα
2

n̂ · σ̂
)

.

The components of σ̂ are the Pauli matrices (12.26), and the exponential is

defined by its Taylor expansion. A further streamlining of the notation is

achieved by introducing the vector α = αn̂ and by defining s = σ̂/2. This

allows us to write

R̂(α) = e−i α·s. (12.31)

In terms of the components of s, the commutators (12.30) take the form

[sa, sb ] = iεabcsc , (12.32)

where

εabc =







+1 if abc is an even permutation of xyz

−1 if abc is an odd permutation of xyz

0 if abc is not a permutation of xyz

(12.33)

12.2 A Stern–Gerlach relay

A beam of spin-1/2 atoms passes through three inhomogeneous magnetic

fields (from the right to the left as in Fig. 12.2). The gradients in the first

and the third magnet point upward (toward the tip of the upper pole, where

the field is strongest), while the gradient in the second magnet points to

the right (relative to the atom’s direction of motion). Unless the atoms are

specially prepared, the beam gets split three times: first into two beams

that are deflected upward and downward, respectively, then into four beams

two of which are deflected to the left and two to the right, and finally into

eight beams, four of which are deflected upward and four downward. We

thus expect the atoms to hit the screen in eight spots.
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Fig. 12.2 The apparatus used in Sec. 12.2.

What happens if we gradually reduce the power of the second magnet,

so that the four left spots first overlap and then merge with the four right

spots? How many spots will be seen?

Let us calculate, assuming that initially the pure state |a〉 is associated

with each atom. The amplitude for an atom’s arrival in the uppermost

right spot (with respect to the atom’s direction of motion) is

〈z+|x+〉〈x+|z+〉〈z+|a〉 =
1

2
〈z+|a〉 . (12.34)

Problem 12.17. (∗) The probability of an atom’s arrival at the screen (no

matter at which spot) equals 1.

If the second magnet is switched off, the amplitude for an atom’s arrival at

the (now single) uppermost spot is

〈z+|x+〉〈x+|z+〉〈z+|a〉+ 〈z+|x−〉〈x−|z+〉〈z+|a〉 = 〈z+|a〉 , (12.35)

whereas the amplitude for an atom’s arrival at the (now single) spot directly

below is

〈z−|x+〉〈x+|z+〉〈z+|a〉+ 〈z−|x−〉〈x−|z+〉〈z+|a〉 = 0 . (12.36)

By the same token, the amplitude for an atom’s arrival at the (now single)

lowermost spot is 〈z−|a〉, whereas the amplitude for an atom’s arrival at the

(now single) spot directly above is 0. The reason why the atoms arrive in

two spots rather than four is this: without the intermediate measurement

of the x component, the repeatability of measurements guarantees that

the outcome of the second measurement of the z component confirms the

outcome of the first measurement. Figure 12.3 illustrates what happens if

the power of the second magnet is gradually reduced.
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Fig. 12.3 Constructive or destructive interference occurs in regions where the outcome
of the measurement of the spin’s x component is no longer indicated.

12.3 Why spin?

This makes two questions: Why is it called “spin”? And what is it for?

In answer to the first question, we observe that wave functions trans-

forming under rotations about the z axis as ψ −→ eimφψ are eigenstates

of L̂z with eigenvalue m, while spin states transforming under rotations

about this axis as |s〉 −→ eiφ/2|s〉 are eigenstates of σ̂z with eigenvalue 1/2.

Both angular momentum and spin—also called extrinsic and intrinsic an-

gular momentum, respectively—are conserved for closed systems because

the Hamiltonians of such systems reflect the isotropy of space (in this par-

ticular case, with respect to rotations about the z axis).

And what is it for? The answer to this question emerges from one of

those theorems that are as easy to state as they are hard to prove [Pauli

(1940); Duck and Sudarshan (1998)]. Particle beams passing through an

inhomogeneous magnetic field may split into b = 2, 3, 4, . . . beams depend-

ing on the particles’ spin. Beams consisting of spinless particles, for which

l = 0, don’t split. Beams consisting of spin-1/2 particles split into two

beams, as we have seen. The general rule is b = 2 l+ 1, where the possible

values of l are 0, 1, 2, 3 . . . and 1/2, 3/2, 5/2 . . . .

As we shall see in Sec. 14.2, every particle is either a boson or a fermion.

The aforementioned theorem, due to Pauli, states that a fermion cannot

have an integral spin (l = 0, 1, 2, . . . ), whereas a boson cannot have a half-

integral spin (l = 1/2, 3/2, 5/2, . . .). But only fermions obey the exclusion

principle (Sec. 14.5), and the stability of matter requires that its fundamen-

tal constituents—electrons and nucleons or electrons and quarks—obey this
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principle (see Sec. 22.1). The long and the short of it is that the funda-

mental constituents of matter must be particles with a half-integral spin of

at least 1/2.

12.4 Beyond hydrogen

The helium atom has two electrons, and its nucleus—two protons and two

neutrons—has about four times the mass of the hydrogen nucleus. If the in-

fluence of the electrons on the nucleus as well as relativistic and spin effects

are ignored, the corresponding stationary states are in principle obtainable

as solutions of the following equation:

E
∂ψ

∂t
=− ~

2

2m

[
∂2ψ

∂x2
1

+
∂2ψ

∂y2
1

+
∂2ψ

∂z2
1

+
∂2ψ

∂x2
2

+
∂2ψ

∂y2
2

+
∂2ψ

∂z2
2

]

+

[

−2e2

r1
− 2e2

r2
+

e2

r12

]

ψ . (12.37)

The wave function now depends on the six coordinates x1, y1, z1, x2, y2, z2
of the two electrons relative to the nucleus, and the potential energy is

made up of three terms: two that are inverse proportional to the respective

distances r1 =
√

x2
1 + y2

1 + z2
1 and r2 =

√

x2
2 + y2

2 + z2
2 between the elec-

trons and the nucleus, and one that is inverse proportional to the distance

r12 =
√

(x2−x1)2 + (y2−y1)2 + (z2−z1)2 between the electrons.

The fact that we have one wave function depending on six coordinates

rather than two separate wave functions each depending on three coordi-

nates, should not come as a surprise. The sole purpose of wave functions

depending on more than one coordinate is to let us calculate joint prob-

abilities, which may be correlated (Sec. 1.4). The probability of finding

the first electron in a region A and the second electron in a region B, for

example, is given by the joint probability

p(A,B) =

∫

A

d3r1

∫

B

d3r2 |ψ(r1, r2)|2. (12.38)

If the whereabouts of the two electrons were independent of each other, it

would be possible to factorize ψ(r1, r2) into ψ1(r1) and ψ2(r2), and p(A,B)

would be the product of the probabilities

p(A) =

∫

A

d3r1 |ψ(r1)|2, p(B) =

∫

B

d3r2 |ψ(r2)|2.
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But in general, and particularly where the solutions of Eq. (12.37) are

concerned, this is not the case.

For the lowest energy levels, Eq. (12.37) has been solved by numerical

methods. With three or more electrons in the picture, looking for exact

solutions of the corresponding Schrödinger equation is a hopeless under-

taking. Through further simplifications it is nevertheless possible to get

valuable results. The Periodic Table and many properties of the chemical

elements can be understood by using the central field approximation [e.g.,

Marchildon (2002), Sec. 9.3]. In this approach, one disregards the details

of the interactions between electrons. One instead considers each electron

subject to two potentials, one representing the effect of the nucleus, and

one representing the effect of a continuous, spherically symmetric charge

distribution, which does duty for the remaining electrons. Spin effects are

also neglected except for the Pauli exclusion principle (Sec. 14.5), which

implies that two electrons associated with the same wave function cannot

be also associated with the same spin state. Measurements of their spin

components with respect to the same axis—no matter which—will yield

different outcomes. Because only two outcomes are possible, at most two

electrons can share the same orbital.

The central field approximation yields stationary wave functions

ψnlm(r) for single electrons that are quite similar to those of atomic hydro-

gen, except that their dependence on the radial coordinate is modified by

the charge distribution that stands in for the other electrons. This modi-

fication has the result that the energies associated with orbitals with the

same quantum number n but with different quantum numbers l are no

longer equal. For any n > 1, the mean distance between the electron and

the nucleus increases with l. With a greater mean distance, the electron is

more shielded against the nucleus by the cloud of negative charge represent-

ing the other electrons. Electrons with higher l are therefore less strongly

bound and their ionization energies are lower.

Problem 12.18. The number of orbitals with the same quantum number n

is n2.

Chemists group orbitals into electron shells. Each shell encompasses all

orbitals with the same principal quantum number n. The nth shell can

therefore “accommodate” 2 × n2 electrons—twice n2 because each orbital

can “accommodate” two electrons.

Helium has a “full” first shell and an “empty” second shell. Because

the helium nucleus has twice the charge of the hydrogen nucleus, the two
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electrons are, on average, significantly closer to the nucleus than the single

electron of the hydrogen atom. The ionization energy of helium, accord-

ingly, is much higher, 24.6 eV as compared to 13.6 eV. On the other hand, if

we tried to add an electron to create a negative helium ion, this would have

to “go into” the second shell, which is strongly shielded from the nucleus

by the electrons of the first shell. Helium is therefore neither prone to give

up an electron not able to hold on to an extra electron. It is chemically

inert, as are all of the elements in the rightmost column of the (traditional)

Periodic Table.

Through the second row of the Periodic Table, the second shell gets

“filled.” Because the energies of the 2p orbitals are higher than the energy

of the 2s orbital, the latter gets “occupied” first. With each added electron

(and proton) the electron distribution as a whole gets pulled inward, and

the ionization energy goes up, from 5.4 eV for lithium (atomic number

Z=3) to 21.6 eV for neon (Z=10). Whereas lithium readily parts with

its loosely bound outer electron, fluorine (Z=9), having a single “vacancy”

in the second shell, is eager to grab one. Both are therefore quite active

chemically. The progression from sodium (Z=11) to argon (Z=18) parallels

that from lithium to neon.

There is a noteworthy peculiarity in this progression of ionization ener-

gies: the ionization energy of oxygen (Z=8, 13.6 eV) is lower than that of

nitrogen (Z=7, 14.5 eV), and that of sulfur (Z=16, 10.36 eV) is lower than

that of phosphorus (Z=15, 10.49 eV). To understand why this is so, we

must take account of certain details that have so far been ignored. Suppose

that one of the two 2p electrons of carbon (Z=6) goes into the m=0 orbital

(with respect to the z axis). Where will the other 2p electron go? It will

go into any “vacant” orbital that minimizes the repulsion between the two

electrons by maximizing their mean distance. This is neither of the two

orbitals with |m|=1 with respect to the z axis but an orbital with m=0

with respect to some axis perpendicular to the z axis. If we call this the

x axis, then the third 2p electron of nitrogen goes into the orbital with m=0

relative to y axis. The fourth 2p electron of oxygen then has no choice but

to go into an already occupied 2p orbital. This raises its energy sufficiently

for the drop in ionization energy from nitrogen to oxygen.

By the time the 3p orbitals are completely “filled,” the energies of the

3d states are pushed up so high (as a result of shielding) that the 4s state

is energetically lower. The “filling” up of the 3d orbitals therefore begins

only after the 4s orbitals are “full,” with scandium (Z=21).
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12.5 Spin precession

The Pauli equation (15.6) is to a non-relativistic particle of spin 1/2 what

the Schrödinger equation (7.23) is to a non-relativistic particle without spin.

The Pauli wave function has two components, and what interests us here

is how they depend on each other:

i~
d

dt

(
ψ+

ψ−

)

= −µ σ̂ ·B
(
ψ+

ψ−

)

=

( −µBz −µ(Bx − iBy)

−µ(Bx + iBy) µBz

)(
ψ+

ψ−

)

.

B is the magnetic field, and if q and m are the charge and mass of an elec-

tron, then µ = q~/2mc is the Bohr magneton. If the particle is subject to

a homogeneous magnetic field B = (0, 0, B), the two equations are actually

independent of each other:

i~
dψ+

dt
= −µBψ+ , i~

dψ−
dt

= +µBψ− .

Their respective solutions are proportional to e±(i/~)µBt, and they predict

the respective outcomes ±µB for a measurement of the energy associated

with the electron’s spin. If instead B = (B, 0, 0), we obtain the coupled

equations

i~
dψ+

dt
= −µBψ− , i~

dψ−
dt

= −µBψ+ .

A possible pair of solutions is

ψ+ = cos

(
µB

~
t

)

, ψ− = i sin

(
µB

~
t

)

.

This tells us that the probabilities associated with a measurement of the

z component of the spin, pz
+ and pz

−, oscillate as follows:

pz
+ = cos2

(
µB

~
t

)

, pz
− = sin2

(
µB

~
t

)

= cos2
(
µB

~
t± π

2

)

. (12.39)

To find out how the probabilities py
+ and py

− associated with a measure-

ment of the y component of the spin oscillate, we make use of Eqs. (12.23)

and (12.25):

ψy
+ =

1√
2

(
ψ+ + iψ−

)

=
1√
2

[

cos

(
µB

~
t

)

− sin

(
µB

~
t

)]

= cos

(
µB

~
t+

π

4

)

,

ψy
− =

1√
2

(
ψ+ − iψ−

)

=
1√
2

[

cos

(
µB

~
t

)

+ sin

(
µB

~
t

)]

= cos

(
µB

~
t− π

4

)

.
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Hence,

py
+ = cos2

(
µB

~
t+

π

4

)

, py
− = cos2

(
µB

~
t− π

4

)

. (12.40)

From Eqs. (12.39) and (12.40) we gather that the axis with respect to

which a spin measurement yields “up” with probability 1 is precessing at

the frequency ω = 2µB/~. (Bear in mind that the period of cos2 is π.)

12.6 The quantum Zeno effect

Consider a spin that is precessing about the x axis as described in the

previous section. At t = 0, the probability of finding it up with re-

spect to the z axis equals 1. At later times, this probability is given by

p(t) = cos2(µBt/~). If we measure the z component of the spin N times at

intervals of duration t/N , the probability of finding it up each time equals

[p(t/N)]N =
[
cos2(µBt/N~)

]N
. (12.41)

As N → ∞, this tends to unity. A finite number of (instantaneous) mea-

surements slows down the precession, and an infinite number of measure-

ments performed during a finite interval would bring it to a halt.

While no measurement is instantaneous and the limit N →∞ is physi-

cally unattainable, the tendency of repeated measurements to slow down the

rate at which the probabilities of the possible outcomes change, is a general

and experimentally well-established feature of quantum mechanics [Misra

and Sudarshan (1977); Peres (1980); Singh and Whitaker (1982)]. The ef-

fect is named after the Eleatic philosopher Zeno who, in the 5th Century

B.C.E., put forth a series of apparent paradoxes designed to demonstrate

that motion was impossible.

The reverse effect also exists. If there is no magnetic field and the

spin is measured at intervals of duration t/N with respect to an axis that

rotates with angular frequency ω about the x axis, the probability of find-

ing it up each time is again given by Eq. (12.41). In this case, a finite

number of (instantaneous) measurements causes a certain amount of pre-

cession, and in the unphysical limit N → ∞ this approaches the angular

frequency of the rotating apparatus. This too is a general and experimen-

tally well-established feature of quantum mechanics. If an infinite number

of measurements could be performed during a finite interval, the behavior

of a quantum system would be determined exclusively by what the experi-

menters chose to measure.
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The bottom line: for the quantum-mechanical correlation laws to be

effective, not only must there be measurements (whose possible outcomes

they serve to correlate) but also there must be unmeasured intervals be-

tween the measurements.
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Composite systems

13.1 Bell’s theorem: The simplest version

Consider the following setup [Mermin (1985)] (Fig. 13.1):

Fig. 13.1 Mermin’s simplest version of Bell’s theorem.

The device at the center launches two particles in opposite directions. Each

particle enters an apparatus capable of performing one of three measure-

ments. Each measurement has two possible outcomes, indicated by a red

or green light. In each run of the experiment the measurement performed

is randomly selected for each apparatus. After a large number of runs, we

have in our hands a long record of apparatus settings and responses. This

record has the following characteristics:

• Whenever both apparatuses perform the same measurement (11, 22, or

33), equal colors (RR or GG) are never observed.

• The pattern of R’s and G’s is completely random.

In particular, the apparatuses flash different colors exactly half of the time.

If this does not bother you, then try to explain how it is that the colors

differ whenever identical measurements are performed!

The obvious explanation is that each particle arrives with an “instruc-

tion set”—a set of properties determining how the apparatus will respond.

169
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There are 23 = 8 such sets: RRR, RRG, RGR, GRR, RGG, GRG, GGR,

and GGG. If, for instance, a particle arrives with RGG, the apparatus

flashes red if it is set to 1, and green if it is set to 2 or 3. According to this

explanation, the reason why the outcomes differ whenever both particles are

subjected to the same measurement is that the particles are launched with

opposite instruction sets. If one particle carries the instruction set RRG,

then the other particle carries the instruction set GGR.

Let us see if this explanation is tenable. Suppose that the instruction

sets are RRG and GGR. In this case we expect to see different colors with

five of the 32 = 9 possible combinations of apparatus settings (namely,

11, 22, 33, 12, 21) and to see equal colors with four of them (namely, 13,

23, 31, and 32). Because the apparatus settings are randomly chosen, this

pair of instruction sets produces different colors 5/9 of the time. The same

is obviously true for the remaining pairs of instruction sets except the pair

RRR, GGG. If the two particles carry these instruction sets, we see different

colors every time, irrespective of the apparatus settings. If follows that we

see different colors at least 5/9 of the time. The probability of observing

different colors is greater than 5/9. This is Bell’s inequality for the present

setup.

If the particles did arrive with instruction sets—i.e., if each particle did

come with three properties the possession of any one of which is revealed by

the apparatus—then Bell’s inequality would be satisfied. But it isn’t, since

the apparatuses flash different colors half of the time. We appear forced to

conclude, in this instance as in many similar experimental situations, that

the predictions of quantum mechanics cannot be explained with the help of

instruction sets [Aspect (2002); Greenstein and Zajonc (1997); Laloë (2001);

Redhead (1987)]. These measurements do not reveal pre-existent properties

or values. In a radical sense, they create their outcomes. They create the

properties or values whose possession (by a system or an observable) they

indicate.

But then how is it that the colors differ whenever identical measurements

are made? Since each apparatus indicates each possible outcome half of the

time, the marginal probabilities of the outcomes are p(R) = p(G) = 1/2. If

the outcomes were uncorrelated, we would have that p(R,G) = p(G,R) =

p(R,R) = p(G,G) = 1/4. Instead we have p(R,R) = p(G,G) = 0 and

p(R,G) = p(G,R) = 1/2 whenever the apparatus settings agree. What

mechanism or process is responsible for these correlations? How does one

apparatus or particle “know” which measurement is performed and which

outcome is obtained by the other apparatus? I can tell you the answer
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straight off: you understand this as well as anybody else! As a distinguished

Princeton physicist commented, “anybody who’s not bothered by Bell’s

theorem has to have rocks in his head” [quoted by Mermin (1985)].

Einstein was bothered, albeit not by Bell’s theorem, whose original

version [Bell (1964)] appeared several years after his death. The title of

Bell’s 1964 paper, “On the Einstein Podolsky Rosen paradox,” refers to

a seminal paper of 1935, in which Einstein, Podolsky, and Rosen made

use of similar correlations—now often collectively referred to as “EPR cor-

relations”—to argue that quantum mechanics was incomplete. In 1947,

Einstein wrote in a letter to Max Born that he could not seriously be-

lieve in the quantum theory “because it cannot be reconciled with the idea

that physics should represent a reality in time and space, free from spooky

actions at a distance” [Einstein (1971)]. In his 1964 paper, Bell was led

to conclude that, on the contrary, “there must be a mechanism whereby

the setting of one measurement device can influence the reading of another

instrument, however remote.” Spooky actions at a distance are here to

stay! As Bell wrote in a subsequent paper [Bell (1966)], “the Einstein–

Podolsky–Rosen paradox is resolved in a way which Einstein would have

liked least.”

13.2 “Entangled” spins

Consider two physical systems A and B, which have been subjected to mea-

surements. The respective outcomes are |a〉〈a| and |b〉〈b|. If no interactions

take place between the systems—which could lead to correlations between

the outcomes of subsequent measurements—then the systems remain as-

sociated with vectors |a(t)〉 and |b(t)〉 belonging to the respective vector

spaces Va and Vb of the individual systems. In this case the composite sys-

tem made up of A and B is associated with the pair of vectors |a(t)〉 and

|b(t)〉, which is itself a vector. This vector—denoted by |a(t)〉 ⊗ |b(t)〉 or,

more simply, by |a, b (t)〉—belongs to the vector space Va ⊗ Vb, the direct

product of the two vector spaces.

The scalar product in Va⊗Vb is the product of two scalar products, one

in Va and one in Vb:

〈a′, b′|a, b〉 = 〈a′|a〉 〈b′|b〉 . (13.1)

If the vectors |a1〉, . . . , |am〉 form a basis in Va and the vectors |b1〉, . . . , |bn〉
form a basis in Vb, then the mn vectors |ai, bk〉 form a basis in Va ⊗ Vb .
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Given a composite system associated with the vector |a, b〉, the proba-

bility of obtaining the respective outcomes |a′〉〈a′| and |b′〉〈b′| thus equals

|〈a′, b′|a, b〉|2 = |〈a′|a〉|2 |〈b′|b〉|2. (13.2)

This is what we expect on the basis of Born’s rule, and what motivates the

above definitions in the first place.

Most vectors in Va ⊗ Vb cannot be written as a single pair of vectors,

and this is where it gets interesting. In such cases the outcomes of at least

some of the measurements that can be performed on the component systems

are correlated, and the component systems are said to be entangled. It is,

however, always possible to find a pair of bases—say, |Ai〉 in Va and |Bj〉
in Vb—such that the vector associated with two entangled systems can be

written as a single sum of bi-orthogonal terms [Peres (1995), Sec. 5.3]:
∑

k

ck|Ak, Bk〉 . (13.3)

13.2.1 The singlet state

An example of such a vector is the singlet state of two spin-1/2 systems:

|| 0 〉〉 = 1√
2

(

|z+, z−〉 − |z−, z+〉
)

. (13.4)

The double delimiters remind us that this vector belongs to Va ⊗ Vb.

Problem 13.1.
∣
∣〈z+, z+|| 0 〉〉

∣
∣
2

=
∣
∣〈z−, z−|| 0 〉〉

∣
∣
2

= 0 , (13.5)

∣
∣〈z+, z−|| 0 〉〉

∣
∣
2

=
∣
∣〈z−, z+|| 0 〉〉

∣
∣
2

=
1

2
. (13.6)

Problem 13.2. Using the rotation matrices of Sec. 12.1.2, show that || 0 〉〉
is invariant under rotations about the x, y, and z axes.

Problem 13.3. Using Eqs. (12.22–12.25), show that

|| 0 〉〉 = −1√
2

(

|x+, x−〉 − |x−, x+〉
)

=
i√
2

(

|y+, y−〉 − |y−, y+〉
)

.

The singlet state || 0 〉〉 is a two-particle state that can be used to reproduce

the statistical properties described in Sec. 13.1. Here is how: The device

at the center of Fig. 13.1 launches pairs of spin-1/2 particles in the singlet

state. (Such a state can be obtained by letting a spinless particle decay

into two spin-1/2 particles—for example, a π0 meson into an electron and
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a positron. It can also be prepared by inducing a spinless hydrogen molecule

to dissociate into a pair of hydrogen atoms or by letting two protons scatter

each other at low energies.) The three observables that the apparatuses are

designed to measure are the spin components with respect to three coplanar

axes, each differing from the others by an angle of 2π/3 (120◦).
It is immediately clear that whenever the spins are measured with re-

spect to the same axis (identical apparatus settings), opposite outcomes

(different colors) are obtained. What remains to be shown is that the out-

comes are completely random if the apparatus settings are not taken into

account. As you will remember (Eq. 12.19), if the angle between two axes

A1 and A2 is α, the probability of finding the spin of a spin-1/2 particle

up with respect to A2, after having found it up with respect to A1, is given

by cos2(α/2). Because of the negative correlations of the singlet state, this

is also the probability of obtaining opposite outcomes if the spins of two

particles in the singlet state are measured with respect to axes that differ

by α.

Because the apparatus settings are randomly selected, the probability

with which the same spin component is measured is 1/3, and in these

cases the probability of obtaining opposite results is 1. The probability

with which the particle spins are measured with respect to different axes

is 2/3, and in these cases the probability of obtaining opposite results is

cos2(π/3) = 1/4. If the apparatus setting are not taken into account, the

probability of obtaining opposite outcomes is therefore (1/3)× 1 + (2/3)×
(1/4) = 1/2.

13.3 Reduced density operator

An operator Â ⊗ B̂ acting on a vector |a〉 ⊗ |b〉 in Va ⊗ Vb produces the

vector Â|a〉 ⊗ B̂|b〉. If two systems are associated with the bi-orthogonal

decomposition (13.3), then according to Eq. (8.31) the joint probability of

outcomes represented by the projectors P̂a (acting in Va) and P̂b (acting

in Vb) is

p(P̂a, P̂b) =
∑

i

∑

k

c∗i ck〈Ai, Bi|P̂a ⊗ P̂b|Ak, Bk〉 . (13.7)

If we set P̂b equal to the identity operator 1̂ on Vb, which represents the

trivial “outcome” that provides no information whatever, we obtain the

marginal probability
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p(P̂a) =
∑

i

∑

k

c∗i ck〈Ai, Bi|P̂a ⊗ 1̂|Ak , Bk〉 =
∑

i

|ci|2〈Ai|P̂a|Ai〉 .

This can be written as

p(P̂a) = Tr(ŴaP̂a) with Ŵa =
∑

i

|ci|2|Ai〉〈Ai| .

Equation (13.7), on the other hand, can be cast into the form

p(P̂a, P̂b) = Tr
(
Ŵ(P̂a ⊗ P̂b)

)
with Ŵ =

∑

i

∑

k

c∗i ck|Ak, Bk〉〈Ai, Bi| .

The reduced density operator Ŵa for the first system can thus be obtained

by taking a partial trace of the density operator for the composite system:

Ŵa =
∑

j

〈Bj |
[
∑

i

∑

k

c∗i ck|Ak, Bk〉〈Ai, Bi|
]

|Bj〉 . (13.8)

Problem 13.4. If two spin-1/2 particles are in the singlet state, the spin

state of each individual particle is

Ŵa =
1

2

(

|z+〉〈z+|+ |z−〉〈z−|
)

=
1

2
1̂ . (13.9)

We gather from this density operator that the possible outcomes of any

spin measurement, with regard to any axis, are equally likely. The entire

information provided by the singlet state therefore concerns correlations

between outcomes of measurements performed on both particles.

13.4 Contextuality

In 1967, Simon Kochen and Ernst Specker proved a theorem that places

constraints on the permissible types of hidden variables. Hidden variable

theories posit an unobservable determinism that underlies the observed

randomness of quantum physics. In the extreme case, a cryptodeterministic

theory claims not only that all observables have definite values at all times

but also that their values are independent of the devices by which they are

measured. This idea goes back to the paper by Einstein et al. (1935), in

which they considered the following criterion “reasonable”:

If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical
quantity.
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In his 1951 textbook (Secs. 22.15–22.18), David Bohm mirrored the

thought experiment discussed by EPR by looking at the dissociation of a

spinless diatomic molecule. Since the dissociated atoms are in the singlet

state, EPR could have argued that any spin component of the first atom

can be measured by measuring the corresponding spin component of the

second atom. After a sufficient amount of time, the two atoms may be

assumed to be separated by a great distance, so EPR could have argued

further that this measurement can be made without in any way disturbing

the first atom. But if it is possible to determine the value of any spin

component of an atom without disturbing it, then all of the atom’s spin

components must be in possession of definite values.

In Bohm’s context, the preposterousness of EPR’s claim jumps out at

us right away. The possible values of any spin-component of a spin-1/2

particle are +1/2 and −1/2. If a positive value is predicted for the z com-

ponent, then a negative value is predicted for the component with respect

to the inverted z axis. If we continuously rotate the magnetic gradient

of the apparatus from being parallel to the z axis to pointing in the op-

posite direction, the component with respect to the axis defined by the

apparatus must at some point jump discontinuously from +1/2 to −1/2.

Gleason (1957) and Bell (1966) formally disproved the possibility of such

discontinuous jumps. Bell however went further, pointing out that Glea-

son’s argument as well as his own “tacitly assumed that measurement of

an observable must yield the same value independently of what other mea-

surements may be made simultaneously.” In other words, it assumed that

measurements are noncontextual.

Kochen and Specker assumed that the pre-existent values of observables

A,B,C posited by hidden variable theories mirror the algebraic relations

between the corresponding self-adjoint operators. Specifically, the values

v(A), v(B), v(C) of A,B,C conform to the following constraints: if A,B,C

are compatible, so that Â, B̂, Ĉ commute, then

(1) Ĉ = Â + B̂ implies v(C) = v(A) + v(B) ,

(2) Ĉ = ÂB̂ implies v(C) = v(A) v(B) .

Kochen and Specker (1967) then showed, for vector spaces of at least three

dimensions, that this seemingly innocuous assumption leads to the conclu-

sion that hidden variables must in general be contextual. Their original

proof, which is notoriously complex, used a set of 117 observables. Later it

was shown that the smallest number of observables sufficient to establish

the contextuality of hidden variables for 3-dimensional (and hence larger)
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vector spaces is 18 [Pavičić et al. (2005)]. Here I shall present a simpler

proof, which uses the 4-dimensional state space associated with a system

composed of two particles of spin 1/2 [Mermin (1990)].

Consider the following array of operators:

1̂ ⊗ σ̂z σ̂z ⊗ 1̂ σ̂z ⊗ σ̂z

σ̂x ⊗ 1̂ 1̂ ⊗ σ̂x σ̂x ⊗ σ̂x

σ̂x ⊗ σ̂z σ̂z ⊗ σ̂x σ̂y ⊗ σ̂y

(13.10)

Problem 13.5. Using the three equations (12.27), show that each of these

nine operators has the eigenvalues ±1.

This means that the possible values of the corresponding observables

are ±1.

Problem 13.6. (∗) The three operators in each row and in each column

commute.

It follows that they can be measured simultaneously.

Problem 13.7. (∗) In each row and each column, each operator is the

product of the two others, except for the third column, where each operator

is minus the product of the two others.

Now assume that the observables corresponding to these operators have

pre-existent values. Let us call them

a1 a2 a3

b1 b2 b3
c1 c2 c3

(13.11)

Since the operators in each row and each column of array (13.10) commute,

we expect the corresponding values in each row and each column of array

(13.11), all of which are equal to either +1 or −1, to satisfy the same

multiplication rules as the corresponding operators. In other words, we

expect that the following equations hold:

a1 a2 a3 = 1 , a1 b1 c1 = 1 ,

b1 b2 b3 = 1 , a2 b2 c2 = 1 ,

c1 c2 c3 = 1 , a3 b3 c3 = −1 .

(13.12)

But this is impossible: whereas the product of the left-hand sides of these

six equations equals +1 (because each value occurs squared), the product

of the right-hand sides equals −1.
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The long and the short of it is that what we call “the outcome of a

measurement of an observable A represented by the operator Â” cannot

in general only depend on Â and on the system on which the measure-

ment is performed. It will also depend on the other measurements that are

performed together with the measurement of A. It will be contextual.

Suppose, for example, that eight of the nine values in array (13.11) are

as follows:

a1 = 1 a2 = 1 a3 = 1

b1 = 1 b3 = −1

c1 = 1 c2 = 1 c3 = 1

(13.13)

If the observable having the pre-existent value b2 is measured together with

the observables having the pre-existent values b1 = 1 and b3 = −1, then

b2 = −1. If the same observable is measured together with the observables

having the pre-existent values a2 = 1 and c2 = 1, then b2 = +1. In Sec. 16.3

we shall return to the subject of contextuality for a final consideration.

13.5 The experiment of Greenberger, Horne, and Zeilinger

13.5.1 A game

In this section we start with a game. It involves two teams, the “play-

ers” (Andy, Bob, and Charles) and the “interrogators” [Vaidman (1999)].

According to the rules of this game,

(1) either all players are asked for the value of X ,

(2) or one player is asked for the value of X, and the two other players are

asked for the value of Y .

The possible values of both X and Y are +1 and −1. In case (1), the players

win if and only if the product of their answers equals −1. In case (2), they

win if and only if the product of their answers equals +1. Once the questions

are asked, the players cannot communicate with each other. Before that,

they may work out a strategy. Is there a fail-safe strategy? Can they make

sure that they will win? Ponder this before you proceed.

The obvious strategy is to use pre-agreed answers. Let us call them XA,

XB , XC , YA, YB , YC .

Problem 13.8. Assign values ±1 to the following variables in such a way

that the product of the three X values equals −1 and the product of every
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pair of Y values is equal to the X value of the remaining column—or else

explain why this cannot be done.

XA XB XC

YA YB YC
(13.14)

Here is why it cannot be done. The winning combinations satisfy the fol-

lowing equations:

XAXBXC = −1 , (13.15)

XAYBYC = 1, YAXBYC = 1, YAYBXC = 1 . (13.16)

The product of the left-hand sides of Eqs. (13.16) equals XAXBXC . The

product of their right-hand sides equals +1. Obviously, these three equa-

tions cannot be satisfied as long as Eq. (13.15) holds. Pre-agreed answers

offer no fail-safe strategy. And yet there is such a strategy [Greenberger et

al. (1989)].

13.5.2 A fail-safe strategy

Here goes: Andy, Bob, and Charles prepare three spin-1/2 particles in a

specific manner. Each player keeps one particle with him. When asked for

the value of X , he will measure the x component of the spin of his particle,

and when asked for the value of Y , he will measure the y component. His

answer will be +1 or −1 according as his outcome is positive or negative.

Proceeding in this way, the players are sure to win.

The three-particle state in question is

||Ψ 〉〉 = 1√
2
|z+, z+, z+〉 −

1√
2
|z−, z−, z−〉 . (13.17)

Problem 13.9. Using Eqs. (12.22) and (12.24), show that

||Ψ 〉〉 = 1

2

(

|x+, x+, x−〉+ |x+, x−, x+〉+ |x−, x+, x+〉+ |x−, x−, x−〉
)

.

Each term contains x− an odd number of times. Consequently, whenever

the x components of the three spins are measured, the product of the out-

comes will be negative.

Problem 13.10. Using Eqs. (12.22–12.25), show that

||Ψ 〉〉 = 1

2

(

|x+, y+, y+〉+ |x+, y−, y−〉+ |x−, y+, y−〉+ |x−, y−, y+〉
)

.
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Each term contains an even number of minus subscripts. Moreover, since

Eq. (13.17) is symmetric under permutations of the three spins, this holds

whenever the spin state of one particle is written in terms of |x±〉 and the

spin states of the two others are written in terms of |y±〉. Hence whenever

the x component of one spin and the y components of the two other spins

are measured, the product of the outcomes will be positive.

Can the outcomes obtained in these measurements reveal pre-existent

values? For the same reason that Andy, Bob, and Charles could not use

pre-agreed answers to ensure a win, the answer is negative.

By the time Greenberger et al. (1989) published their paper, it was all

but taken for granted that the contradictions between quantum mechan-

ics and “elements of physical reality” are essentially statistical. Bell-type

inequalities are violated by the statistics of measurements performed on

ensembles of systems associated with identical states. The observables rep-

resented by the operators in Kochen–Specker type arrays cannot all be

measured together. When Greenberger et al. showed, by using an entan-

gled state of three particles, that one can dispose of noncontextual hidden

variables through a single false prediction, it caused quite a stir.

Here is how one can arrive at such a prediction: Suppose that three

particles are associated with the state (13.17), that the values (13.16) pre-

exist, and that each equals +1 or −1. We can use the first Eq. (13.16)

to conclude that XA = YBYC , we can use the second to conclude that

XB = YAYC , and we can use the third to conclude that XC = YAYB .

Based on these conclusions we predict that the product XAXBXC will

come out equal to YBYCYAYCYAYB = (YA)2(YB)2(YC)2 = 1. Yet if we

measure this product, we invariably obtain the value −1.

The first GHZ-type experiment was performed by Bouwmeester et al.

(1999). Needless to say, it was in agreement with the predictions of quantum

mechanics.

13.6 Uses and abuses of counterfactual reasoning

As we just saw, a fruitful source of error in quantum mechanics is the

illegitimate use of counterfactual reasoning. As another example, consider

the following two-particle state [Hardy (1993); Mermin (1994)]:

||Ψ 〉〉 =
√

3

8
|AR, AG〉+

√

3

8
|AG, AR〉 −

1

2
|AG, AG〉 . (13.18)
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Fig. 13.2 Setup illustrating an illegitimate use of counterfactuals.

The setup is similar to that discussed in Sec. 13.1, except that the two appa-

ratuses have two modes of working rather than three (Fig. 13.2). In mode A,

each apparatus indicates either of two possible outcomes, |AR〉〈AR| or

|AG〉〈AG|. The vectors |AR〉 and |AG〉 thus form a basis in a 2-dimensional

vector space.

Problem 13.11. ||Ψ 〉〉 is a unit vector in the direct product of the individ-

ual vector spaces.

Problem 13.12. The following vectors form another basis in the same

space of states:

|BG〉 =

√

3

5
|AG〉+

√

2

5
|AR〉, |BR〉 = −

√

2

5
|AG〉+

√

3

5
|AR〉 .

In mode B, each apparatus indicates either |BR〉〈BR| or |BG〉〈BG|.

Problem 13.13. (∗) Let Â and B̂ be the operators corresponding to the ob-

servables that each apparatus can measure, and let their eigenvalues be ±1 :

Â|AR〉 = |AR〉, Â|AG〉 = −|AG〉, B̂|BR〉 = |BR〉, B̂|BG〉 = −|BG〉. Write

down the matrices for the two operators in the basis made up of |AR〉 and

|AG〉. Show that they do not commute.

Let us calculate some probabilities:

〈〈AR, AR ||Ψ 〉〉 = 0 (13.19)

〈〈AG, BG ||Ψ 〉〉 =
√

3

5
〈〈AG, AG ||Ψ 〉〉+

√

2

5
〈〈AG, AR ||Ψ 〉〉

= −1

2

√

3

5
+

√

3

8

√

2

5
= 0 . (13.20)

In the same way one finds that 〈〈BG, AG ||Ψ 〉〉 = 0. Thus if both appara-

tuses work in mode A, two red lights are never seen, and if they work in

different modes, two green lights are never seen.
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Fig. 13.3 The arrows illustrate the correlations between outcomes obtained by the
measuring devices in Fig. 13.2.

Problem 13.14.

〈〈BG, BG ||Ψ 〉〉 = 3/10 . (13.21)

If both apparatuses work in mode B, two green lights are seen with a prob-

ability of 9%. We may therefore assume that we have made the experiment

with both apparatuses in mode B, and that both lights turned green.

What if, in the same run of the experiment, the first apparatus had

been set to work in mode A? In this case its indicator light would have

shown red. This is a valid counterfactual. We can check that every time

the apparatuses work in mode B and one light is red, the other light will be

green. For the same reason the following counterfactual is valid: if, in the

same run of the experiment, the second apparatus had been set to work in

mode A, its indicator light would have shown red. What we cannot do is

invoke both these valid counterfactuals and draw the following conclusion:

if, in the same run of the experiment, both apparatuses had worked in

mode A, both lights would have shown red. Since two red lights are never

seen if both apparatuses work in mode A (Fig. 13.3), this conclusion is

obviously false.

The reason why is it generally illegitimate to combine legitimate coun-

terfactuals is that their implicit “other things being equal” clauses are vi-

olated. In this particular case, the first counterfactual is valid only if the

second apparatus is assumed to work as it actually did, and the second

counterfactual is valid only if the first apparatus is assumed to work as it

actually did.

Here is another way of being led up the garden path. The setup con-

sists of two interlocking interferometers of the kind discussed in Sec. 11.8

(Fig. 13.4). In the left interferometer positrons are used instead of photons,

and in the right interferometer electrons are used. (As this is a gedanken

experiment, we need not worry about the practical problem of constructing

an interferometer for positrons.) There are four detectors, two (B− and

D−) for the electrons and two (B+ and D+) for the positrons. The letters

B and D stand for “bright” and “dark,” respectively. The “dark” detectors
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Fig. 13.4 Another experiment that lends itself to an illegitimate use of counterfactuals.

are so named because they never respond if a single electron or a single

positron is launched. The fallacious argument goes like this:

An electron and a positron are simultaneously dispatched into their

respective interferometers. If the electron alternatives interfere, D− never

responds. Hence if D− clicks, the electron alternatives did not interfere.

Something must have destroyed the interference between them, and this

can only have been the positron in the other interferometer. But in order

to be able to destroy the interference between the electron alternatives, the

positron must have taken its inner (right) path.1

By the same token, if the positron alternatives interfere, D+ never re-

sponds. Hence if D+ clicks, the positron alternatives did not interfere.

Something must have destroyed the interference between them, and this

1Although “destruction of interference” is a common phraseology, interference is not
an object or state that can be destroyed. (Nor is it a physical mechanism or process, as
was stressed in Sec. 5.3.) Interference is a feature that probability distributions display
whenever they are calculated according to Rule B.
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can only have been the electron in the other interferometer. But in order

to be able to destroy the interference between the positron alternatives, the

electron must have taken its inner (left) path.

Yet if both particles had taken their inner paths, they would have anni-

hilated each other somewhere in the dotted region, and no detector would

have responded. The assumption that both dark detectors click if both

particles are dispatched together is thereby reduced to absurdity. The cor-

responding probability is therefore zero.

A quick calculation will show that this conclusion is wrong.

Let us call the electron alternatives O− (for “outer path”) and I− (for

“inner path”). The positron alternatives then are O+ and I+. If the

two particles are launched together, there are four alternatives: O− &O+,

O− & I+, I− &O+, and I− & I+. If the fourth alternative takes place, the

two particles annihilate each other, and no detector responds. Hence only

the first three alternatives contribute to the probability of “double dark

detection” (both D’s click). This probability is given by

p(D−&D+) = |a(O−&O+) + a(O−&I+) + a(I−&O+)|2

= |a(O−) a(O+) + a(O−) a(I+) + a(I−) a(O+)|2 . (13.22)

The amplitudes a(O−), a(I−), a(O+), and a(I+) are again equal except

that each contains an extra factor i for every reflection: a(O−) = Ai,

a(O+) = Ai, a(I−) = Ai3, and a(I+) = Ai3. Thus,

p(D−&D+) = |(Ai)(Ai) + (Ai)(Ai3) + (Ai3)(Ai)|2 = |A2|2 . (13.23)

Problem 13.15.

p(D−&B+) = p(B−&D+) = p(D−&D+) , p(B−&B+) = 9 p(D−&D+) .

Since the probability with which the two particles annihilate each other

is 1/4, the probability p(D−&D+)+p(D−&B+)+p(B−&D+)+p(B−&B+),

with which any two detectors respond, is (1 + 1 + 1 + 9)|A2|2 = 3/4. This

tells us that p(D−&D+) = |A2|2 = 1/16.

So where did the above argument go wrong? In the context of the

Elitzur–Vaidman experiment (Sec. 11.8), it was legitimate to conclude from

a response of the dark detector (D2) that the bomb was present, and to

conclude further that the alternative involving reflection by M2 took place.

In the present context, it is legitimate to conclude from a response of D+

that the electron was present, for if only a positron had been launched,

the probability of a response by D+ would have been 0. But now there

are two alternatives involving the positron, and nothing has happened that



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

184 The World According to Quantum Mechanics

Fig. 13.5 The experiment of Englert, Scully, and Walther.

warrants the further conclusion that the electron has taken its inner path.

By the same token, nothing has happened that warrants the conclusion

that the positron has taken its inner path. What has once again led to the

wrong conclusion is our deep-seated misconception that effects have to be

locally produced.

13.7 The experiment of Englert, Scully, and Walther

Rule A (Sec. 5.1), you will recall, applies “if the intermediate measurements

are made (or if it is possible to find out what their outcomes would have

been if they had been made),” and Rule B applies “if the intermediate

measurements are not made (and if it is impossible to find out what their

outcomes would have been if they had been made).” The following two-slit

experiment [Englert et al. (1994); Scully et al. (1991)] demonstrates the

rationale behind the cryptic clauses in parentheses.

In this experiment atoms are used instead of electrons. All atoms are

of the same type—Cesium-133, for example—and all start out in the same

excited state |e〉. Placed in front of the slits are two initially separate
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microwave resonance cavities, each tuned to the energy difference ∆E be-

tween |e〉 and the ground state |g〉, and thus capable of holding photons2 of

energy ∆E. The design of each cavity moreover ensures that the probability

with which an atom is found to emerge from it in the ground state equals

unity—provided, as always, that the appropriate measurement is made.

13.7.1 The experiment with shutters closed

The two resonance cavities are separated from each other by a pair of

electro-optical shutters, which remain closed for now. Atoms are launched,

one at a time, with nothing to predict the particular cavity through which

any given atom will pass. (Before an atom is launched, the photon left

behind by the previous atom is “removed”: the possibility of detecting it

no longer exists.) Each atom leaves a mark on the screen. How will the

marks be distributed?

Focus on a single atom, after it has hit the screen but before the photon

is removed. This is a situation in which it is possible to find out what

the outcome of an intermediate measurement would have been if it had

been made. The intermediate measurement, had it been made, would have

determined the slit taken by the atom. The reason why we can find out what

its outcome would have been is a strict correlation between its outcome and

the cavity containing the photon. If the atom were found to emerge from

the left slit, the probability of detecting (and absorbing) a photon in the left

cavity would be 1, and if the atom were found to emerge from the right slit,

the probability of detecting (and absorbing) a photon in the right cavity

would be 1. Conversely, if a photon is detected in the left (right) cavity, a

measurement of the slit taken by the atom would have indicated that the

atom has taken the left (right) slit.

Thus Rule A applies. Let us color the marks: those made by atoms that

left a photon in the left cavity green, and those made by atoms that left

a photon in the right cavity red. The dotted curve in Fig. 13.6 gives the

distribution of the green marks, the dashed curve that of the red marks.

The solid curve is the sum of the two distributions. The green marks are

distributed as we expect from atoms that went through the left slit (L), and

the red marks are distributed as we expect from atoms that went through

the right slit (R). (Compare Fig. 13.6 with Fig. 5.2.)

2In what sense can a cavity hold a photon? In precisely this conditional sense: if a
(100% efficient) photodetector were inserted into the cavity, it would detect a photon
with probability 1.
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Fig. 13.6 Distribution of marks if the experiment is done with closed shutters.

Fig. 13.7 Distribution of marks if the experiment is done with open shutters.

13.7.2 The experiment with shutters opened

Situated between the shutters there is a photosensor. If the shutters are

opened before the photon is removed, and if the sensor is 100% efficient,

quantum mechanics predicts that the sensor will absorb the energy ∆E

with probability 1/2. Since we now have a single cavity instead of two,

information about the slit taken by the photon is no longer available. (It has

become customary to say that the information has been “erased.” What has

actually been “erased,” however, is merely the possibility of obtaining the

information.) Does this mean that Rule B now applies? If this experiment

is done with sufficiently many atoms, will the overall distribution of marks

exhibit interference fringes?

The answer has to be negative, for the measurement involving the pho-

ton is made after the atom has hit the screen. The decision about which

measurement to perform—to determine the cavity that held the photon or

to determine the behavior of the photosensor upon opening the shutters—

comes too late to affect the overall distribution of marks.

But we now have another way of coloring the marks: yellow if the pho-

tosensor responds, blue if it fails to respond. Quantum mechanics predicts

that the yellow marks will exhibit the same interference pattern as elec-

trons in a two-slit experiment under the conditions stipulated by Rule B
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(Fig. 5.3). Because the overall distribution of marks is the same in both

versions of the experiment, the blue marks will exhibit the complementary

interference pattern, having maxima where the other has minima and vice

versa. The dotted curve in Fig. 13.7 gives the distribution of yellow marks,

the dashed curve that of blue marks. The solid curve—the sum of the two

distributions—is the same as in Fig. 13.6.

All “yellow” atoms and all “blue” atoms have something in common,

but as their respective behaviors lack classical counterparts, we have no

ready name for it. We may say that the “yellow” atoms went through the

slits in phase, while the “blue” atoms went through the slits out of phase.

We use these phrases for the following reason. If there is to be a maxi-

mum at the center of the screen, the phases of the amplitudes associated

with the alternatives “through L” and “through R” must differ by an even

multiple of π—the alternatives must be “in phase.” And if there is to be a

minimum instead, the amplitudes must differ by an odd multiple of π—the

alternatives must be “out of phase.”

13.7.3 Influencing the past

The “green” atoms, we noted, behave like atoms that went through L,

while the “red” atoms behave like atoms that went through R. Likewise,

the “yellow” atoms behave like atoms that went through the slits in phase

(inasmuch as they display the corresponding interference pattern), while

the “blue” atoms behave like atoms that went through the slits out of

phase. Cannot we conclude from this that the “green” atoms actually went

through L, that the “red” atoms actually went through R, that the “yellow”

atoms actually went through the slits in phase, and that the “blue” atoms

actually went through the slits out of phase? After all, if it looks like a

duck, swims like a duck, and quacks like a duck, then it probably is a duck.

The problem with this conclusion is that it seems to imply the possibility

of influencing the past.

If the experimenters determine the cavity that held the photon, they

learn through which slit the corresponding atom went. If they open the

shutters and observe whether or not the sensor responds, they learn how the

atom went through the slits—in phase or out of phase. They cannot make

the atom go through L or through R, yet by doing the former experiment,

they can make sure that it went through a single slit—either L or R. Nor

can they make an atom go through the slits in phase or out of phase, yet by

doing the latter experiment they can make sure that it when through both
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Fig. 13.8 Logical flow chart for the experiment of Englert, Scully, and Walther.

slits.3 And since they can choose between the two experiments after the

atom has made its mark on the screen, they can, by their choice, contribute

to determine the atom’s past behavior (Fig. 13.8).

Before rejecting the assumptions that lead to this conclusion, we need

to be clear about what they amount to. Saying that a “green” atom went

through L cannot mean that this very atom would also have gone through L

if the cavity containing the photon emitted by it had not been ascertained.

For if this cavity had not been ascertained, the experimenters could have

checked how the atom went through both slits (in phase or out of phase),

3For more on the meaning of “both” see Sec. 18.1.2.
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and regardless of the outcome they would have found that it went through

both slits.

Rather, a “green” atom went through L only because this is what was

indicated by a measurement. An atom goes through a particular slit only

if the appropriate measurement is made, and it goes through L only if this

is the outcome. It goes through both slits with a particular phase relation

only if a different measurement is made, and it goes through both slits in

phase only if that is the outcome. If neither measurement is made, it does

not go through the left slit and it does not go through the right slit and it

does not go through both slits in phase and it does not go through both slits

out of phase. To paraphrase a well-known conclusion by John Wheeler,4 no

property (or behavior) is a possessed (occurrent) property (behavior) unless

it is a measured (or indicated) property (behavior). Quantum-mechanical

measurements do not merely reveal pre-existent properties or behaviors

that occurred independently of measurements; they create their outcomes.

Seen in this light, the possibility of partially determining an atom’s past

behavior no longer seems preposterous. If, as a general rule, the properties

of the quantum world exist only if, and only to the extent that, they are

measured,5 then the behavior of a quantum system at an earlier time can

depend on a measurement performed at a later time, and thus also on a

decision taken at a later time. Nothing like the backward-in-time causation

found in some fantasy novels, which changes the past, is suggested. By

choosing to perform either experiment, the experimenters cause no change

in the atom’s past behavior. Rather, they contribute to create or determine

its past behavior. The world has exactly one history. Its state at any given

time is what it is; it cannot be changed. But it can be what it is because

of a measurement performed at a later time.6

But still, if no behavior is an occurrent behavior unless it is a measured

or indicated behavior, we have reasons to doubt that the “green” atoms

actually went through L. Strictly speaking, the conclusion that is warranted

by the detection of a photon in the left cavity is this: the corresponding

atom would have been found taking the left slit if a direct measurement of

the slit taken by the atom had been made. But here we need to take into

account that no measurement is direct. Measurement outcomes are inferred

4“No elementary phenomenon is a phenomenon until it is a registered (observed) phe-
nomenon” [Wheeler (1983)].
5This issue will be conclusively addressed in Sec. 16.3.
6In fact, property-indicating events occur quite generally after the time of possession

of the indicated property, albeit usually a fairly short time after.
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from pointer positions, digital displays, detector clicks, computer printouts,

and so forth. If we had no right to infer the position of a particle from such

an indicator—if we could only conclude ad infinitum that a particle would

be found with certainty if the appropriate measurement were made—then

it would be impossible to measure the position of a particle, or anything

else for that matter. But if we do have the right to infer the position of a

particle from the click of a detector, then we also have the right to infer

the slit taken by an atom from the click of a photosensor (if one is placed

in each cavity).

13.8 Time-symmetric probability assignments

The Born rule (8.32) is generally interpreted asymmetrically with respect

to time: the probability p(P̂v) = |〈v|u〉|2 is assigned to the possible outcome

P̂v = |v〉〈v| of a measurement performed at a later time t2 on the basis of

an actual outcome |u〉〈u| of a measurement performed at an earlier time t1.

Given the temporally asymmetric character of human experience, it is ob-

vious why we prefer this interpretation. Yet a time-reversed interpretation

is just as legitimate; we can also use the Born rule to retrodict the proba-

bilities of the possible outcomes of an earlier measurement on the basis of

the actual outcome of a later measurement.

The difference between these two uses of the Born rule diminishes if we

think in terms of the ensembles needed to (approximately) measure Born

probabilities. Such ensembles can be postselected as well as preselected.

To preselect an ensemble is to take into account only those instances of the

measurement performed at t1 that yield the particular outcome P̂u = |u〉〈u|.
The preselected ensemble—an ensemble of identically prepared systems—

serves to measure, as relative frequencies, the probabilities of the possible

outcomes of the measurement performed at t2. To postselect an ensem-

ble is to take into account only those instances of the measurement per-

formed at t2 that yield the particular outcome P̂v = |v〉〈v|. The postse-

lected ensemble—an ensemble of identically retropared systems—serves to

measure, as relative frequencies, the probabilities of the possible outcomes

of the measurement performed at t1. (Since Born probabilities are condi-

tional on the actual outcomes on the basis of which they are assigned, the

“prepared” probabilities of the possible outcomes of a measurement can ob-

viously differ from the “retropared” probabilities of the possible outcomes

of the same measurement.)
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Quantum mechanics even allows us to assign probabilities symmetrically

with respect to time, on the basis of both earlier and later outcomes.

Suppose that three measurements are performed at the respective times

t1 < t2 < t3, that the measurement at t1 yields the outcome u (represented

by the projector |u〉〈u|), and that the measurement at t3 yields the outcome

w (represented by the projector |w〉〈w|). We can calculate the probability

p(v|w, u) with which the outcome v (represented by the projector |v〉〈v|) is

obtained at t2 taking both data into account.

To measure this probability as a relative frequency, we use an ensem-

ble that is both pre- and postselected (i.e., an ensemble of systems that

are identically retropared as well as identically prepared). To create the

appropriate ensemble, we take into account (i) only those instances of the

measurement performed at t1 that yield u and (ii) only those instances of

the measurement performed at t3 that yield w. In other words, we discard

all runs in which the first measurement yields an outcome different from u

and the third measurement yields an outcome different from w.

To calculate p(v|w, u), we start from Eq. (1.8) but include in each term

a condition c:

p(b|a,c) =
p(a,b|c)
p(a|c) . (13.24)

In the present context this reads

p(v|w,u) =
p(w,v|u)
pV(w|u) . (13.25)

p(w,v|u) is the probability of obtaining both v and w by the respective

measurements at t2 and t3, on the condition that u is obtained at t1. It

is given by the product p(w|v) p(v|u) of two Born probabilities. pV(w|u)
is the probability of obtaining w at t3 given that u is obtained at t1 and

given that the measurement with the possible outcome v is made at t2.

The subscript V stands for the observable that is measured at t2. Since we

calculate the probability with which this measurement yields v, we must

use pV(w|u) rather than the Born probability p(w|u) = |〈w|u〉|2, which is

applicable only if no measurement is made between t1 and t3. As the inter-

mediate measurement is assumed to be made, Rule A applies, so pV(w|u)
is given by

pV(w|u) =

n∑

i=1

p(w, vi|u) , (13.26)
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where the values vi, i = 1, 2, . . . , n, are the possible outcomes of a mea-

surement of V . Setting v = vk, we arrive at the ABL rule [Aharonov,

Bergmann, and Lebowitz (1964)]:

p(vk|w, u) =
|〈w|vk〉〈vk |u〉|2

∑n
i=1 |〈w|vi〉〈vi|u〉|2

. (13.27)

13.8.1 A three-hole experiment

It will be instructive to apply the ABL rule to the following setup. This

features a plate with three holes in it; let us call them A, B, and C. In

front of the plate and equidistant from the holes there is a particle source

(say, an electron gun G), and behind the plate, again equidistant from the

holes, there is a particle detector D. Finally, interposed between C and D

there is a device that causes a phase shift by π. An electron emerging from

the holes is thus prepared in a way that can be “described” by the vector

|1〉 = 1√
3

(
|A〉+ |B〉+ |C〉

)
, (13.28)

and it is retropared in a way that can be “described” by the vector

|2〉 = 1√
3

(
|A〉+ |B〉 − |C〉

)
. (13.29)

The factor eiπ = −1 in front of |C〉 takes account of the phase shifting

device.

We now add an apparatus MA that can indicate whether or not a par-

ticle went through A. The two possible outcomes of this measurement are

represented by P̂A = |A〉〈A| (“through A”) and P̂A′ = P̂B + P̂C (“not

through A”). The probability that a particle launched at G and detected

at D is found to have gone through A is thus

p(A|2, 1) =
|〈2|P̂A|1〉|2

|〈2|P̂A|1〉|2 + |〈2|P̂A′ |1〉|2
. (13.30)

Problem 13.16. |〈2|P̂A′ |1〉|2 = 0.

Thus p(A|2, 1) = 1. With this setup, a particle launched at G and detected

at D is certain to be found taking hole A.

If, instead of MA, we use an apparatus MB that can indicate whether or

not a particle went through B, we similarly find that p(B|2, 1) = 1. With

this setup, a particle launched at G and detected at D is certain to be found

taking hole B.
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Finally we use an apparatus that can indicate through which of the three

holes a particle went. The three possible outcomes of this measurement are

represented by P̂A, P̂B , and P̂C . The probability that a particle launched

at G and detected at D is found taking hole A now equals

p(A|2, 1) =
|〈2|P̂A|1〉|2

|〈2|P̂A|1〉|2 + |〈2|P̂B |1〉|2 + |〈2|P̂C |1〉|2
=

1

3
. (13.31)

Time-symmetric probability assignments thus are in general contextual.

The probability with which a particle launched at G and detected at D

is found to go through A depends on the possible outcomes of the interme-

diate measurement. If the only possible outcome other than A is A′, then

p(A|2, 1) = 1, and if the possible outcomes other than A are B and C, then

p(A|2, 1) = 1/3.7

7Although the present section does not fall under the heading of the present chapter, its
inclusion is warranted by the contextuality that time-symmetric probability assignments
share with probability assignments to outcomes of measurements performed on entangled
systems.
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Chapter 14

Quantum statistics

14.1 Scattering billiard balls

Two billiard balls coast toward each other with equal speed, then collide.

Initially the balls move in opposite directions, so their momenta add up

to zero. Because momentum is conserved, the total momentum remains

zero, so after the collision the balls still move with equal speed in opposite

directions. If the collision is perfectly head-on, each ball simply reverses

its direction of motion. But suppose that the collision is uncontrollably

somewhat off-center, so that each ball veers from its original direction of

motion by some angle α. We cannot predict whether the balls will scatter

at right angles (plus/minus some small angle ε), but we can estimate the

probability with which they will do so.

There are two ways in which the balls can scatter at right angles. If we

call the incoming balls N and S (suggesting that they move northward and

southward, respectively), we may call the outgoing balls E and W . If either

ball is as likely to be scattered eastward as westward, the corresponding

probabilities are equal:

p(N→W,S→E) = p(N→E, S→W )
Def
= p . (14.1)

The probability p⊥ with which either possibility happens, no matter which,

is the sum of these two probabilities:

p⊥ = p(N→W,S→E) + p(N→E, S→W ) = 2p . (14.2)

14.2 Scattering particles

We now replace the billiard balls with particles (Fig. 14.1). We again

assume that the total momentum is zero, and that the scattering is elastic;

195



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

196 The World According to Quantum Mechanics

Fig. 14.1 The two possibilities that contribute to the probability with which two par-
ticles scatter elastically at right angles. The lines do not represent trajectories; they
merely indicate possible identities between the incoming and outgoing particles.

in a particle context this means that no particles are created or annihilated

in the process and that no type swapping takes place. If the incoming

particles (and hence the outgoing ones) are of different types, then it is

possible to learn which outgoing particle is identical with which incoming

particle, so Rule A applies:

p⊥ = |A(N→W,S→E)|2 + |A(N→E, S→W )|2. (14.3)

This is again the sum of two probabilities. If there are no preferred direc-

tions (due to external forces, particle spins, and such), the two probabilities

are equal,

|A(N→W,S→E)|2 = |A(N→E, S→W )|2 Def
= p , (14.4)

and we again have that p⊥ = 2p.

But now suppose that the conditions stipulated by Rule B are met. This

rules out, among other things, that the incoming particles are of different

types. We then have that

p⊥ = |A(N→W,S→E) +A(N→E, S→W )|2. (14.5)

Equation (14.4) allows the amplitudes to differ by a phase factor:

A
Def
= A(N→W,S→E) = eiφA(N→E, S→W ) . (14.6)

Interchanging either the incoming or the outgoing particles, so that the

alternative N→E, S→W turns into the alternative N→W,S→E, causes

the multiplication of A(N→E, S→W ) by eiφ. Accordingly, interchanging
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either the incoming or the outgoing particles twice, or interchange both the

incoming particles and the outgoing particles, corresponds to a multiplica-

tion of A(N→E, S→W ) by (eiφ)2. But this simply restores the original

alternative. It follows that (eiφ)2 = 1, and this leaves eiφ = ±1 as the only

possibilities.

Nature makes use of both possibilities. Every particle is either a boson or

a fermion. Exchanging two indistinguishable bosons leaves the amplitudes

unchanged,

A(N→W,S→E) = A(N→E, S→W ) , (14.7)

whereas exchanging two indistinguishable fermions causes a change of sign,

A(N→W,S→E) = −A(N→E, S→W ) . (14.8)

For bosons, therefore,

p⊥ = |A+A|2 = 4|A|2 = 4p , (14.9)

whereas for fermions

p⊥ = |A−A|2 = 0 . (14.10)

Two indistinguishable bosons are twice as likely to scatter at right angles

as two bosons that carry identity tags of some sort, while the probability

with which two indistinguishable fermions scatter at right angles equals

zero.

Can we nevertheless assume that there is an answer to the question

“Which outgoing particle is identical with which incoming particle?” We

cannot, for it this question had an answer, what actually happened would

correspond to either of the alternatives of Fig. 14.1, and in this case we

would have p⊥ = 2p instead of either p⊥ = 4p or p⊥ = 0.

14.2.1 Indistinguishable macroscopic objects?

Could the identities of macroscopic objects, such as billiard balls, get

“mixed up” in this way?

For one thing, macroscopic objects are so large and/or complex that the

likelihood with which two such objects are truly indistinguishable is virtu-

ally zero. For another, while it is relatively easy to adequately isolate two

particles from the rest of the world, isolating sufficiently large or complex

objects is virtually impossible. Even if the cosmic microwave background

radiation were the only source of photons, such objects would continually

absorb and emit photons with wavelengths in the millimeter range, and this
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would make it possible to pinpoint each object’s location to within a few

millimeters or less. If the objects are larger than that, then it is possible to

trace their respective trajectories with sufficient precision to know which is

which.

14.3 Symmetrization

Suppose that we have two bosons, and that their respective states are |A〉
and |B〉. And suppose that these bosons are fully characterized by their

respective states. If we write the state of the composite system as |A〉 ⊗ |B〉,
or simply |AB〉, we add to the physically warranted distinction between

“the boson associated with |A〉” and “the boson associated with |B〉” the

physically unwarranted distinction between the “first” or “left” boson and

the “second” or “right” boson.

If |A〉 and |B〉 are orthogonal states, we can eliminate the physically

unwarranted distinction by associating the composite system with the sym-

metric state

|AB〉+ |BA〉√
2

, (14.11)

which is invariant under the interchange of A and B.

Problem 14.1. If each of the orthogonal vectors |A〉 and |B〉 is a unit

vector, then so is (14.11).

Let |A〉, |B〉, |C〉, . . . be mutually orthogonal boson states. Properly sym-

metrized multiple-boson states are obtained by adding all distinct permu-

tations and dividing by the square root of their number. The symmetrized

three-boson states are thus of the form

|AAA〉, 1√
3

(

|AAB〉 + |ABA〉+ |BAA〉
)

,

1√
6

(

|ABC〉 + |ACB〉+ |BAC〉 + |BCA〉+ |CAB〉 + |CBA〉
)

.

14.4 Bosons are gregarious

If n bosons have been found in possession of the same complete set of

properties X and one boson has been found in possession of a different

complete set of properties Y , what is the probability of finding all n + 1
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bosons in possession of X? (A complete set of properties is what a complete

measurement yields.) The initial and final states are, respectively,

|i〉 = 1√
n+ 1

(

|
n

︷ ︸︸ ︷

X . . .X Y 〉+ · · ·+ |
n−m
︷ ︸︸ ︷

X . . .X Y

m
︷ ︸︸ ︷

X . . .X〉+ · · ·+ |Y
n

︷ ︸︸ ︷

X . . .X〉
)

|f〉 = |
n+1

︷ ︸︸ ︷

X . . .X〉
The transition amplitude thus is

1√
n+ 1

(

〈
n+1

︷ ︸︸ ︷

X . . .X |
n

︷ ︸︸ ︷

X . . .X Y 〉+ · · ·+ 〈
n+1

︷ ︸︸ ︷

X . . .X |Y
n

︷ ︸︸ ︷

X . . .X〉
)

. (14.12)

Since the n+1 terms in brackets are equal to 〈X |X〉n〈X |Y 〉, this amplitude

is equal to

n+ 1√
n+ 1

〈
n+1

︷ ︸︸ ︷

X . . .X |
n

︷ ︸︸ ︷

X . . .X Y 〉 =
√
n+ 1 〈

n+1
︷ ︸︸ ︷

X . . .X |
n

︷ ︸︸ ︷

X . . .X Y 〉 . (14.13)

The wanted probability thus is (n+ 1) |〈
n+1

︷ ︸︸ ︷

X . . .X |
n

︷ ︸︸ ︷

X . . .X Y 〉|2.
If we were dealing with distinguishable (“tagged”) bosons (in which case

X and Y would not be complete sets of properties), the initial state would

be the non-symmetrized vector

|
n

︷ ︸︸ ︷

X . . .X Y 〉 ,

and the transition probability would be |〈
n+1

︷ ︸︸ ︷

X . . .X |
n

︷ ︸︸ ︷

X . . .X Y 〉|2.
The upshot: if n bosons of a given type have been found in possession

of the same complete set of properties X and one boson of the same type

has been found in possession of a different complete set of properties Y , the

probability of finding all n+ 1 bosons in possession of X is n+ 1 times as

large as it would be if the bosons were distinguishable.

14.5 Fermions are solitary

Fermion amplitudes change sign each time states are swapped between par-

ticles. Fermion states must therefore be anti-symmetrized. Since no anti-

symmetric state can be formed of two identical fermion states, the prob-

ability of finding two fermions in possession of the same complete set of

properties is zero. This is the content of the exclusion principle originally

formulated by Wolfgang Pauli.
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14.6 Quantum coins and quantum dice

We refer to the statistics of identical bosons as Bose–Einstein (BE) statis-

tics, to that of identical fermions as Fermi–Dirac (FD) statistics, and to

that of distinguishable particles as Maxwell–Boltzmann (MB) statistics.

As we all know, the probability with which a toss of a pair of MB coins

results in two heads, pMB(HH), equals p(H) × p(H) = 1/4. Since MB

coins are distinguishable, there are two ways in which one comes up heads

and one comes up tails, so the odds for this to happen are given by the sum

of two probabilities, pMB(HT ) + pMB(TH) = 1/2.

For a pair of FD coins, there is a single possible outcome, one heads

and one tails, so the odds for this to happen equals unity. What about

BE coins? The probability of tossing the first H is p(H) = 1/2. The

probability of subsequently tossing another H is twice the probability of

subsequently tossing a T, p(H |H) = 2p(T |H), for the factor n + 1 equals

2 in this case. Because we must have that p(T |H) + p(H |H) = 1, we

conclude that p(T |H) = 1/3 and p(H |H) = 2/3. The joint probability

p(HH)—not to be confused with the conditional probability p(H |H)—

equals p(H |H) p(H) = (2/3) (1/2) = 1/3. Similarly we find that p(TT ) =

1/3. And since there is now only one way of obtaining one H and one T ,

the probability for this to happen is 1 − (1/3) − (1/3) = 1/3. Note that

the possible outcomes are again equiprobable. Only in the case of MB

coins there are four possibilities while in the case of BE coins there are

three.

Problem 14.2. (∗) When tossing a pair of MB dice, the probability of

obtaining the sum of 12, pMB(12), equals 1/6 × 1/6 = 1/36. There are

two ways of obtaining the sum of 11, so pMB(11) is twice that. By the

same token, pMB(10) = 3/36, pMB(9) = 4/36, and so on. What are the

corresponding probabilities when tossing (i) a pair of BE dice and (ii) a

pair of FD dice?

The outcomes of tosses of MB dice are uncorrelated. The probabilities

assigned to the possible outcomes of one toss are independent of the out-

come of another toss. In particular, the probability of obtaining a 6 is 1/6

regardless of how many dice already have come up 6. The outcomes of

tossing BE dice or FD dice, on the other hand, are correlated. For BE dice,

the probability of obtaining a 6 increases with the number of dice already

showing a 6, while for FD dice the probability of obtaining a 6 is zero unless

no other die is showing a 6.



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

Quantum statistics 201

What mechanism or process could possibly explain the correlations that

obtain between indistinguishable particles? Misner et al. (1973) have an-

swered this question succinctly: “No acceptable explanation for the mirac-

ulous identity of particles of the same type has ever been put forward. That

identity must be regarded, not as a triviality, but as a central mystery of

physics.”

14.7 Measuring Sirius

The telescopic image of a pointlike light source is a disk whose diameter

depends inversely on the telescope’s aperture. For the largest telescopes,

the angles subtended by the nearest or largest fixed stars are of the order of

the diameter of this disk. At least this was true in 1956, when R. Hanbury

Brown and R.Q. Twiss (1956) (HBT) showed how the angular diameter

of a fixed star could be measured. HBT proposed to use two telescopes

pointed at the same star. By fitting the telescopes with photomultipliers,

they argued, the star’s angular diameter could be deduced from correlations

between variations of the photon detection rates through the telescopes.

The arguments of HBT were greeted with considerable disbelief, and

various theoretical and experimental efforts were made to disprove them.

Photons, it was thought, are emitted one at a time and detected one at a

time. A photon is detected by either of the photomultipliers—M1 or M2.

No photon is detected by both M1 and M2. So how could the photon counts

be correlated? It was even thought that if HBT were correct, quantum

mechanics was in need of thorough revision.

In 1965, an intensity interferometer using two paraboloid mirrors with

a diameter of 6.5m and a variable baseline (from 10 to 188 meters) was

completed in Australia, and by the end of the decade, HBT had measured

the angular diameters of more than twenty stars with remarkable accuracy,

confounding those who had argued that their interferometer could not work

[Hanbury Brown et al. (1967); Hanbury Brown (1968)].

The best way of demonstrating the error of HBT’s critics is to go ahead

and calculate. We first assume that there are two light sources. Let a(y|x)
be the amplitude associated with what we are used to calling “the emission

of a photon” at x = A or x = B (the positions of the light sources) and

“its absorption” at y = 1 or y = 2 (the positions of the telescopes). Let

ryx stand for the distance between x and y. The absolute value of a(y|x)
is inverse proportional to ryx. Let the corresponding proportionality factor
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Fig. 14.2 Above: two indistinguishable alternatives; below: two distinguishable alter-
natives.

be α for the source at A and β for the source at B. The phase of a(y|x) is

proportional to ryx. We may assume that the corresponding proportionality

factor is the same wavenumber k = 2π/λ for both sources. (Each telescope

is fitted with a narrow bandpass filter, so that λ has a well-defined value.)

Because the differences between the absolute values of the four amplitudes

are minute as compared to the absolute values themselves, we may use

a(1|A) =
α

R
eikr1A , a(1|B) =

β

R
eikr1B ,

a(2|A) =
α

R
eikr2A , a(2|B) =

β

R
eikr2B .

R is defined by Fig. 14.3.

The simultaneous detection at 1 and 2 of photons emitted at A or B can

come about in four ways. Two of the four alternatives—those with photons

emitted by different sources as indicated in the upper half of Fig. 14.2—are

indistinguishable, and two—those with photons emitted by the same source

as indicated in the lower half of Fig. 14.2—are distinguishable, both from

each other and from the indistinguishable alternatives. (By measurements

performed on the sources at A and at B, it is in principle possible to learn

how many photons were emitted by each source.) The amplitudes of the

indistinguishable alternatives are
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Fig. 14.3 Schematic of the parameters used in Hanbury Brown and Twiss’s calculation
of the angular diameter of a star.

a(1|A) a(2|B) =
αβ

R2
eik(r1A+r2B),

a(1|B) a(2|A) =
αβ

R2
eik(r1B+r2A).

Because the alternatives are indistinguishable, we must add their ampli-

tudes. The corresponding probability is therefore given by

pI =
α2β2

R4

(

eik(r1A+r2B) + eik(r1B+r2A)
)(

e−ik(r1A+r2B) + e−ik(r1B+r2A)
)

=
α2β2

R4

(

2 + eik(r1A+r2B−r1B−r2A) + eik(r1B+r2A−r1A−r2B)
)

=
2α2β2

R4

(

1 + cos [k(r1A + r2B − r1B − r2A)]
)

. (14.14)

To this we have to add the probabilities of detecting photons from the same

source. The probability of simultaneously detecting two photons thus is

P = pI + |a(1|A) a(2|A)|2 + |a(1|B) a(2|B)|2 = pI +
α4

R4
+
β4

R4

=
1

R4

[

α4 + β4 + 2α2β2
(

1 + cos [k(r1A + r2B − r1B − r2A)]
)]

.

The angles δ1 and δ2 in what follows are defined by Fig. 14.3. Because

R� D, where D is the distance between A and B, we have that

δ1 ≈
r1B − r1A

D
=
r2A − r2B

D
≈ δ2 ≈

d

2R
,
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where d is the distance between the telescopes. For the argument

(2π/λ)(r1A + r2B − r1B − r2A) of the cosine we can therefore write

(2π/λ) dD/R. As the distance between the telescopes is changed, the value

of the cosine oscillates between +1 and −1. Let ∆ be the amount by which

d has to increase so that the argument of the cosine completes a cycle:

2π∆D

λR
= 2π . (14.15)

The angle D/R between the sources thus equals λ/∆.

Finally we must take into account that we have a disk-shaped source

rather than two pointlike ones. Doing so involves integration over the radius

of the disk. The angular diameter of the star is then obtained in much the

same way from the variation of the resulting probability P with ∆.
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Relativistic particles

15.1 The Klein–Gordon equation

Formally the complete Schrödinger equation (7.23) can be obtained by the

following steps. Start with the non-relativistic relation between kinetic

energy and kinetic momentum, EK = p2
K/2m. Write this in terms of the

total energy E, the total momentum p, the potential energy EP = qV (r, t),

and the potential momentum pP = (q/c)A(r, t) (Sec. 9.3):

E − qV =
1

2m

(

p− q

c
A
)2

. (15.1)

Multiply both sides from the right by ψ(r, t), and replace the total energy

and the total momentum by the respective operators Ê = i~ ∂/∂t and

p̂ = −i~ ∂/∂r (Sec. 11.6):

(

i~
∂

∂t
− qV

)

ψ =
1

2m

(
~

i

∂

∂r
− q

c
A
)2

ψ . (15.2)

When we obtained the non-relativistic expressions for EK and pK from the

relativistic expressions (9.19) and (9.20), we found that the kinetic parts of

the relativistic expressions satisfy the relation (9.21). Using units in which

c = 1, as is customary in the literature on relativistic quantum mechanics,

this relation is

E2 − p2 = m2.

If we start with this relation and follow the same steps, we arrive at the rel-

ativistic version of the Schrödinger equation, which is known as the Klein–

Gordon equation (although it was Schrödinger who considered it first):
[(

i~
∂

∂t
− qV

)2

−
(

~

i

∂

∂r
− qA

)2
]

ψ = m2ψ . (15.3)

205
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Fig. 15.1 Some of the paths over which we sum when calculating a non-relativistic

particle propagator.

15.2 Antiparticles

As we noted in Sec. 4.1, any function of the form ψ(r, t) = Ae(i/~)(−Et+p·r)

satisfying the relation E = p2/2m is a solution of the free Schrödinger

equation, and so is any linear combination of such functions. By the same

token, any function of the same form satisfying the relation E2−p2 = m2,

or E = ±
√

m2 + p2, is a solution of the free Klein–Gordon equation, and

so is any linear combination of such functions. What, then, are we to make

of solutions that seem to have negative energy?

When we introduced the (non-relativistic) propagator in the form of

a path integral (Sec. 5.4), the summation extended over all paths leading

from an initial to a final spacetime point, provided that velocities remained

finite (Fig. 15.1). In the relativistic theory, spacelike path segments are

exponentially suppressed rather than explicitly excluded (Sec. 9.1). But if

paths with spacelike segments are not explicitly excluded, then paths that

make U–turns with respect to time are not excluded either. If the speed of

light can be exceeded, there is nothing to prevent a particle from returning

into the past.

Two such paths are shown in Fig. 15.2. Paths in the vicinity of the solid

curve, containing as they do sizable spacelike segments, make no significant

contribution to a particle’s amplitude of propagation from A to B. The

same cannot be said of paths in the vicinity of the dashed curve, inasmuch



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

Relativistic particles 207

Fig. 15.2 Two paths that contribute to the particle propagator in a relativistic theory.

as this lacks spacelike segments. This path makes two U–turns (or rather,

V–turns) with respect to time. According to a point of view advocated

by Feynman (1949), a particle traveling in the positive time direction with

negative energy is a particle traveling in the negative time direction with

positive energy.1 In more conventional terms, it is an antiparticle, which has

the same mass and total spin as the corresponding particle but the opposite

charge. Feynman’s account of the dashed path in Fig. 15.2 is that a particle

starts out at A, is scattered into a negative time direction at t2, is scattered

back into a positive time direction at t1, and arrives at B. The conventional

chronology, on the other hand, is that (i) a particle is launched at tA, (ii) a

particle-antiparticle pair is created at t1, (iii) the particle launched at tA
and the antiparticle created at t1 annihilate each other at t2, and (iv) the

particle created at t1 is detected at tB .

15.3 The Dirac equation

The utility of the Klein–Gordon equation is restricted to particles with-

out spin. To arrive at the appropriate equation for a particle with spin,

one needs to let the wave function have more than one component. This

equation will therefore be a matrix equation. The simplest version is

1This chimes in with our observation in Sec. 6.6 that for antiparticles the sign of proper
time differs from that of coordinate time.
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linear in the operators of energy and momentum. If one requires in addition

that each component of ψ should satisfy the Klein-Gordon equation, one

finds that the lowest possible number of components is four, and that this

number yields the appropriate equation for a spin-1/2 fermion—the Dirac

equation:
(

i~
∂

∂t
− qV

)

ψ −α ·
(

~

i

∂

∂r
− qA

)

ψ = βmψ . (15.4)

β and the three components (α1, α2, α3) of α are 4 × 4 matrices, and ψ is

an 4× 1 matrix called a spinor. A possible choice for these matrices is

α1 =







0 0 0 +1

0 0 +1 0

0 +1 0 0

+1 0 0 0






, α2 =







0 0 0 −i
0 0 +i 0

0 −i 0 0

+i 0 0 0






,

α3 =







0 0 +1 0

0 0 0 −1
+1 0 0 0

0 −1 0 0






, β =







+1 0 0 0

0 +1 0 0

0 0 −1 0

0 0 0 −1






.

Note that the 2 × 2 matrices that make up the upper right and lower left

quarters of the three α matrices are the Pauli spin matrices (12.26). The

components of ψ correspond to the 2 + 2 spin components of a spin-1/2

particle and its antiparticle. A more compact way of writing the Dirac

equation (15.4) is
[

iγk
(

∂

∂xk
+ iqAk

)

−m
]

ψ = 0 , (15.5)

where γ0
Def
= β and γa

Def
= βαa (a = 1, 2, 3). In the non-relativistic limit the

Dirac equation reduces to the Pauli equation,
(

i~
∂

∂t
− qV

)

ψ =
1

2m

(
~

i

∂

∂r
− q

c
A

)2

ψ − µσ ·Bψ , (15.6)

where ψ is a 2-component spinor, the three components of σ are the Pauli

matrices, B is the magnetic field, and µ = q~/2mc is the Bohr magneton

introduced in Sec. 12.5.

15.4 The Euler–Lagrange equation

Consider now an action of the form

Sφ[C] =
∫

L(φ, ∂φ/∂xk) d4x , (15.7)
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where C is a path of a field φ in the field’s configuration spacetime. We are

interested in that path for which the action is stationary under infinitesimal

variations of φ :

δS =

∫ [
∂L
∂φ

δφ+
∂L

∂(∂φ/∂xk)
δ(∂φ/∂xk)

]

d4x = 0 . (15.8)

In general, the variation of φ takes place at every point in the spacetime

region of integration, except at the temporal boundaries, where the initial

and final field configurations are fixed. Integrating the second term in

square brackets by parts and using δ(∂φ/∂xk) = ∂(δφ)/∂xk, we obtain

δS =

∫ [
∂L
∂φ

δφ− ∂

∂xk

(
∂L

∂(∂φ/∂xk)

)

δφ+
∂

∂xk

(
∂L

∂(∂φ/∂xk)
δφ

)]

d4x .

The last term can be converted into a surface integral over the boundary of

the region of integration. As said, δφ vanishes at the temporal boundaries.

If we consider only variations δφ that also vanish at the spatial boundary—

for example because the field vanishes at spatial infinity—then this surface

integral equals zero. And since δS = 0 holds for arbitrary variations δφ, it

implies that φ satisfies the Euler–Lagrange equation

∂

∂xk

(
∂L

∂(∂φ/∂xk)

)

− ∂L
∂φ

= 0 . (15.9)

If the Lagrangian contains several fields, there is one such equation for each

field.

Problem 15.1. The free Klein–Gordon equation (in units in which both c

and ~ are equal to unity) is the Euler–Lagrange equation for a real field φ

with Lagrangian

L =
1

2

[(
∂φ

∂t

)2

−
(
∂φ

∂r

)2

−m2φ2

]

. (15.10)

The free Klein–Gordon equation is also the Euler–Lagrange equation for a

complex field φ (which is equivalent to two real fields) with Lagrangian

L =

(
∂φ

∂t

)2

−
(
∂φ

∂r

)2

−m2φ2 . (15.11)
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15.5 Noether’s theorem

Consider, next, the infinitesimal form of a continuous deformation ∆φ(r, t)

of the field φ ,

φ(r, t) → φ′(r, t) = φ(r, t) + α∆φ(r, t) , (15.12)

where α is an infinitesimal parameter. Here is how this deformation affects

the Lagrangian L(φ, ∂φ/∂xk):

α∆L =
∂L
∂φ

(α∆φ) +

(
∂L

∂(∂φ/∂xk)

)
∂

∂xk
(α∆φ)

= α
∂

∂xk

(
∂L

∂(∂φ/∂xk)
∆φ

)

+ α

[
∂L
∂φ
− ∂

∂xk

(
∂L

∂(∂φ/∂xk)

)]

∆φ .

Because the last term vanishes in consequence of the Euler–Lagrange equa-

tion (15.9), we arrive at the following result: if L remains unaffected—

∆L = 0—by the infinitesimal deformation α∆φ, then the 4-current

jk =
∂L

∂(∂φ/∂xk)
∆φ (15.13)

is conserved, i.e., it satisfies the equation of continuity ∂jk/∂xk = 0. This

exemplifies Noether’s theorem, according to which a local conservation law

is implied by the invariance of the Lagrangian under any continuous trans-

formation of the fields on which it depends.

If, for example, L is invariant under spacetime translations, Noether’s

theorem implies the conservation of energy–momentum, and if L is invari-

ant under rotations, it implies the conservation of angular momentum. It

thereby allows us to derive expressions for the energy–momentum and the

angular momentum of a closed system from the Lagrangian of the system.

It bears repetition, though, that an equation of continuity or a local con-

servation law does not warrant the conclusion that the conserved quantity is

some localizable stuff moving about continuously. Local conservation laws

are features of our calculational tools. As was pointed out in Sec. 10.7.1, the

equation of continuity (10.37) for the components of energy–momentum (in

flat spacetime) simply ensures that in all particle “collision” experiments,

and regardless of the reference frame used, the total energy-momentum of

the incoming particles equals the total energy–momentum of the outgoing

particles.

If L(φ, ∂φ/∂xk) is invariant under the phase transformation φ→ e−iαφ,

it is the system’s charge that is conserved, and Noether’s theorem allows

us to obtain an expression for it. Applying the infinitesimal transformation

α∆φ = −iαφ, α∆φ∗ = iαφ∗ (15.14)
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to the Lagrangian (15.11), we obtain the locally conserved Noether current

jk = i

[

φ ∗
(
∂φ

∂xk

)

−
(
∂φ∗

∂xk

)

φ

]

(15.15)

associated with the (complex) Klein–Gordon equation. The charge density

accordingly is

j0 = ρ = i

[

φ ∗
(
∂φ

∂t

)

−
(
∂φ∗

∂t

)

φ

]

. (15.16)

Here too there should be no uncertainty about the meaning of this local

conservation law. Charge, like energy–momentum, is not a localizable stuff

moving about continuously. The equation of continuity for charge simply

ensures that in all particle “collision” experiments, and regardless of the

reference frame used, the total charge of the incoming particles equals the

total charge of the outgoing particles.

15.6 Scattering amplitudes

In non-relativistic physics, particle numbers are conserved. In a non-

relativistic scattering experiment with N incoming particles, there will be

N outgoing particles, and at any intermediate time, N particles would be

found if the appropriate measurement were made. If there are several types

of particles, this holds separately for each of them.

Not so in relativistic physics. Relativistic particles can leap into and out

of existence in groups with zero total charge, and any group of particles can

metamorphose into a different group of particles, provided that the overall

charge (or charges) and the total energy–momentum stay the same. This

means that we have to come to grips with a new kind of fuzziness—the

fuzziness of particle numbers.

In consequence of this fuzziness, the amplitude 〈out|S|in〉 for a scatter-

ing event involving a group of incoming particles (specified by |in〉) and a

group of outgoing particles (specified by |out〉) will be a series made up of

terms that feature all possible particle metamorphoses in all possible com-

binations and arrangements. Formally this series can be obtained from a

path integral of the following form:

〈out|S|in〉 =
∫

DC e(i/~)
∫
L(φa,∂φa/∂xk) d4x. (15.17)

C is now a path in the configuration spacetime of fields φa (a = 1, 2, . . . )

leading from the configuration specified by |in〉 (the quantum states of the
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incoming particles) to the configuration specified by |out〉 (the quantum

states of the outgoing particles). Because the fuzziness associated with

individual particles has been taken into account by using a Lagrangian

whose free part has the free wave equation for its Euler–Lagrange equation

(Sec. 15.4), what is being summed over is alternatives that differ in the

number of particles that are created and/or annihilated, the spacetime lo-

cations of the creation/annihilation events, and the (topologically) different

ways in which these events can be connected by free-particle propagators.

In the case of fields associated with freely propagating particles there is

nothing to be summed. If particles are to scatter each other, the Lagrangian

must contain, apart from the term that yields the free field equations, an

interaction term Lint, which contains products of different fields or higher

powers of a field than the second. Expanding exp[(i/~)
∫
Lintd

4x] in powers

of the fields yields the desired series. Needless to say, this is only useful if

the series converges rapidly enough, as it does for the electromagnetic and

weak interactions.

15.7 QED

In SI units, the Lagrangian for quantum electrodynamics (QED) is

L = ψ

[

iγk
( ∂

∂xk
+ iqAk

)

−m
]

ψ − 1

4
FjkF

jk, (15.18)

where ψ
Def
= ψ†γ0, ψ† being the adjoint of ψ. We gather from this that

Lint = −qψγkAkψ. The terms of the series for a given scattering amplitude

can be represented by diagrams known as Feynman diagrams, according

to rules known as Feynman rules, which encapsulate how diagrams are

generated and what factors are associated with each diagram. The form of

Lint indicates that QED diagrams are made of two types of lines—straight

lines for fermions and wiggly lines for photons—and a single type of vertex:

a point at which two fermion lines and one photon line meet.

15.8 A few words about renormalization

If the diagram in Fig. 15.3 were the only contribution to the electron–

electron scattering amplitude, the two parameters appearing in the La-

grangian (15.18)—q and m—would be measurable and could be interpreted

as the electron’s charge and mass, respectively. There is, however, an
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Fig. 15.3 Lowest-order graph contributing to the amplitude for electromagnetic scatter-

ing between electrons. The direction of the arrows (upward) signifies that the interacting
particles are electrons rather than positrons. Because the mathematical expression rep-
resented by this graph contains, for each vertex, an integral over all possible spacetime
locations, a vertex does not occupy any particular spacetime location.

infinite series of contributions (Fig. 15.4). We should therefore not be

surprised if these parameters turned out to be physically meaningless, as

in fact they do.

One way to obtain physical—which is to say, measurable—expressions is

to first attend to another apparent evil: when the diagrams are evaluated by

integrating over the 4-momenta of the (internal) lines rather than over the

positions of the vertices, one finds that most of the diagrams are divergent,

which is to say, infinite. This can be repaired by introducing a cutoff,

a procedure known as regularization: one integrates only up to a large

but finite energy–momentum. One thereby obtains an expression like the

following, which depends on the “bare” charge q, on the cutoff Λ, and on

the momenta of the incoming and outgoing particles, whose values we may

summarily denote by K:

A = −iq + iCq2 ln
Λ2

K
+ 0(q3) . (15.19)

C is a finite constant and 0(q3) contains only higher powers of q than the

second.

Suppose now that the actual, physical charge—call it qp—has been mea-

sured for a specific set of 4-momenta K0. To second order in q, we then

have

−iqp = −iq + iCq2 ln
Λ2

K0
+ 0(q3) . (15.20)
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Fig. 15.4 Some 4-vertex graphs contributing to the amplitude for electromagnetic scat-

tering between electrons.

This tell us that

−iq = −iqp − iCq2 ln
Λ2

K0
+ 0(q3) = −iqp − iCq2p ln

Λ2

K0
+ 0(q3p) . (15.21)

The second equality is correct to the order of approximation indicated.

Plug this into Eq. (15.19) to find that

A = −iqp − iCq2p ln
Λ2

K0
+ iCq2p ln

Λ2

K
+ 0(q3)

= −iqp + iCq2p ln
K0

K
+ 0(q3) . (15.22)

Lo and behold! Both the “bare” charge q and the cutoff Λ have disappeared.

This little exercise illustrates that charges (as well as masses) are “running”
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parameters: depending on the Lagrangian, their physical values increase

or decrease as the momentum scale at which experiments are performed

increases.2

Only a few Lagrangians are nice enough to be renormalizable, in the

sense that all experimental predictions can be made to converge by substi-

tuting physical parameters for a finite number of “bare” parameters in the

manner indicated.

15.8.1 . . . and about Feynman diagrams

How should we think about Feynman diagrams, and especially about their

internal lines—those that correspond to neither incoming nor outgoing par-

ticles and are usually referred to as “virtual particles”? According to Zee

(2003, pp. 53–57),

Spacetime Feynman diagrams are literally pictures of what happened. . . .
Feynman diagrams can be thought of simply as pictures in spacetime of
the antics of particles, coming together, colliding and producing other
particles, and so on.

Mattuck (1976) is more cautious:

Because of the unphysical properties of Feynman diagrams, many writ-
ers do not give them any physical interpretation at all, but simply regard
them as a mnemonic device for writing down any term in the perturba-
tion expansion. However, the diagrams are so vividly ‘physical looking’,
that it seems a bit extreme to completely reject any sort of physical inter-
pretation whatsoever. . . . Therefore, we shall here adopt a compromise
attitude, i.e., we will ‘talk about’ the diagrams as if they were physi-
cal, but remember that in reality they are only ‘apparently physical’ or
‘quasi-physical ’.

Consider a two-electron scattering event. The momenta of the incom-

ing particles are known, as are the momenta of the outgoing particles.

Whatever happened in the meantime, during which nothing is measured,

is anybody’s guess. Zee would probably agree that whenever quantum

mechanics requires us to sum over two or more alternatives, no single al-

ternative can by itself be a picture of what actually happened. If indeed

there is a sense in which alternatives represent what actually happened,
2The dependence of a particle’s physical mass on a momentum scale in relativistic

quantum physics should not be confused with the dependence of a particle’s mass on
its velocity, which is (quite unnecessarily) introduced in many textbooks on classical
relativity.
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this can only be that they all happened together. What this might mean

will be spelled out in Part 3. It certainly has nothing to do with the

magical invocation of “vacuum fluctuations,” no matter how often this is

repeated.3

Mattuck’s plea for cognitive dissonance, on the other hand, is a recipe

for philosophical disaster. Who has not heard the song and dance about

a cloud of virtual photons and virtual particle-antiparticle pairs surround-

ing every real particle, which is routinely invoked in explanations of the

dependence of physical masses and charges on the momentum scale at

which they are measured? As long as this naive reification of quantum-

mechanical probability algorithms continues, it should not surprise anyone

that quantum mechanics keeps being vilified as unintelligible, absurd, or

plain silly.4

15.9 Beyond QED

The well-tested quantum theories beyond QED are collectively known as

the Standard Model. Wilczek (2001) went so far as to suggest that it be

called simply “the theory of matter.” It encompasses the theory of the

strong nuclear interactions called quantum chromodynamics (QCD) and

a partially unified theory of the weak and electromagnetic interactions—

“partially” because it involves two symmetry groups rather than a single

one. The findings of every high-energy physics experiment carried out to

date are consistent with the Standard Model. While it does have real and/or

perceived shortcomings, its proposed extensions have so far remained in the

realm of pure speculation.

3Many Feynman diagrams contain so-called “vacuum parts,” which are not connected
by any sequence of lines and vertices to any incoming or outgoing particle. These are
artifacts of the methods employed in generating the perturbation series. They are sys-
tematically canceled out in every actual calculation of a scattering amplitude. They
certainly do not warrant the claim that “the vacuum in quantum field theory is a stormy
sea of quantum fluctuations” [Zee (2003), p. 19].
4Another instance of cognitive dissonance was provided by Wilczek (1999) who, in one

and the same article, declared (i) that electrons are “excitations of the same underlying
ur-stuff, the electron field,” which is “the primary reality,” and (ii) that “we can only
require—and generally we only obtain—sensible, finite answers when we ask questions
that have direct, operational meaning.” Questions about underlying ur-stuff and primary
realities are obviously not of the kind that have direct, operational meaning.
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15.9.1 QED revisited

Both QCD and the electroweak theory are generalizations of QED.

The Lagrangian (15.18) for QED is invariant under the gauge transfor-

mation (10.2–10.3):

ψ(t, r)→ eiqα(t,r)ψ(t, r) , (15.23)

Ak → Ak −
∂α

∂xk
or V → V − ∂α

∂t
, A→ A +

∂α

∂r
. (15.24)

The invariance under the phase transformation (15.23) gives us the free-

dom to associate a complex plane with each spacetime point and to inde-

pendently rotate the real and imaginary axes of each of these planes—as

long as an infinitesimal difference in spacetime location corresponds to an

infinitesimal difference in the angle of rotation. This is quite analogous to

the freedom to associate an inertial system with each spacetime point and to

independently Lorentz transform its axes. Both freedoms make room for a

type of interaction. While the freedom to locally rotate the spacetime axes

makes it possible to introduce the gravitational interaction, the freedom

to locally rotate the axes of the complex plane makes it possible—in fact,

necessary—to introduce the electromagnetic interaction, as the following

will show.

Consider the Lagrangian that yields the free Dirac equation:

L = ψ

(

iγk ∂

∂xk
−m

)

ψ . (15.25)

If we want it to be invariant under (15.23), we must introduce a vector field

Ak by substituting
∂

∂xk
→ ∂

∂xk
+ iqAk (15.26)

and we must require that Ak transform according to (15.24).5 The need to

add the term proportional to FjkF
jk, which completes the QED Lagrangian

(15.18), then arises for much the same reasons as it did in the classical

context (not to mention the crucial requirement of renormalizability).

15.9.2 Groups

In mathematics, a group is a set G together with an operation that combines

any two group elements a, b to form a third element a · b. The set and the

operation satisfy the following conditions:
5This substitution parallels the introduction of the covariant derivative in Sec. 9.6.4.
Ak here plays the part of the connection coefficients (9.57).
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(1) For all a, b in G, a · b is also in G.
(2) For all a, b, c in G, (a · b) · c = a · (b · c).
(3) G contains an identity element e such that a = a · e = e · a.
(4) Each a in G has an inverse b such that a · b = b · a = e.

Problem 15.2. For any spacetime point (t, r), the phase transformations

(15.23) form a group.

Because a phase factor can be thought of as a unitary 1 × 1 matrix, this

group is called U(1). As you will remember (Secs. 8.9 and 8.12.1), a linear

operator is called unitary if (and only if) Û†Û = Î (Eq. 8.38), where Û† is

the adjoint of Û. If Aik are the matrix components of a linear operator Â,

then the matrix components of Â† are A∗
ki (Sec. 12.1.2). For an element

U = eiβ of U(1), Eq. (8.38) thus reduces to U ∗U = 1.

If the elements of a group commute, so that a · b = b · a for all a, b, the

group is called Abelian. U(1) is an example of such a group. The group of

rotations in a 3-dimensional space is an example of a non-Abelian group:

the product of two rotations generally depends on the order in which they

are performed.

A group must be distinguished from its representations, which realize

the group elements as matrices and the group operation as matrix multipli-

cation (Sec. 12.1.2). The 2×2 matrices we encountered in Sec. 12.1 do not,

in fact, belong to a representation of the group of rotations in 3-dimensional

space. For, as you learned by doing Problem 12.2 and is also evident from

Eq. (12.15), a rotation by 2π changes the sign of every vector, so that the

smallest positive angle that yields the identity matrix is 4π rather than

2π. Those matrices belong to the fundamental or defining representation

of SU(2), the group of special unitary 2×2 matrices. “Special” here means

that their determinants are equal to unity. SU(2) is locally isomorphic to

the rotation group, in the sense that for sufficiently small angles there is

a one-to-one correspondence between the elements of the two groups and

the operations in each group, but it covers the rotation group twice since

to every element of the rotation group there correspond two elements of

SU(2).

15.9.3 Generalizing QED

Arguably the simplest and most straightforward generalization of QED

is obtained by the following recipe. We again start with the Dirac

Lagrangian (15.25), but instead of requiring its invariance under the local
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U(1) operation (15.23), we require its invariance under the local SU(2)

operation (12.31):

ψ(t, r)→ e−i θ(t,r)·s ψ(t, r) . (15.27)

This means that, in addition to being a 4-component Dirac spinor on which

the matrices γk act, ψ is now a 2-component vector on which the three com-

ponents of s act. Each of these components—the generators of SU(2)—is

a 2× 2 matrix. To make the Lagrangian (15.25) invariant under the trans-

formation (15.27), we must introduce a vector field Ak via a substitution

analogous to (15.26), the difference being that each of the four spacetime

components of the gauge potential Ak is now a 2 × 2 matrix that acts on

the two vector components of ψ. Since each element of SU(2) can be writ-

ten as a linear combination of the group generators, we can introduce the

components Aa
k and write Ak =

∑3
a=1A

a
ks

a. Furthermore we must require

that the transformation (15.27) goes hand in hand with a transformation

of Ak that is analogous to the transformation (15.24), albeit more involved

due to the non-Abelian nature of SU(2).

Finally we need to add a term analogous to that proportional to FjkF
jk

in the Lagrangian for QED. This term has to be constructed out of the

components Aa
k of the gauge potential, their first derivatives, and the struc-

ture constants of SU(2), which are defined by (12.32) and given by the

antisymmetric symbol (12.33). Here, too, the construction leaves little to

the physicist’s discretion.

A further generalization of QED is obtained by following the same recipe

with SU(3) in place of SU(2). It takes eighteen real numbers to specify

a complex 3 × 3 matrix. Unitarity reduces the number of independent

parameters to nine (Eq. 12.12), and the required unity of the determinant

reduces it further to eight. SU(3) therefore has eight generators.

The three gauge groups U(1), SU(2), and SU(3) are the very ones that

feature in the Standard Model, the first two as ingredients of the unified

theory of the electromagnetic and weak interactions, the third as the gauge

group of of the strong interaction or QCD.

15.9.4 QCD

The SU(3) symmetry of QCD requires the strongly interacting particles,

which are known as quarks, to come in three varieties. These are charac-

terized by their charges, which are collectively known as colors. The eight

varieties of massless bosons that are said to “mediate” the strong force,
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called gluons, also carry color charges, owing to the non-Abelian nature of

SU(3).

The two most important characteristics of QCD are asymptotic freedom

and quark confinement. The first means that the shorter the distances over

which quarks interact, the more weakly they interact. The second means

that only color-neutral combinations of quarks will ever appear in isolation.

Both baryons and mesons are such combinations. Baryons—among them

the proton and the neutron—are bound states of three quarks. Mesons are

bound states of a quark and an antiquark.6 Although it is still a hypothesis,

quark confinement is widely believed to be true; it explains the consistent

failure of searches for free quarks, and it has been demonstrated by an

approximate calculation scheme that formulates QCD on a grid or lattice

of spacetime points.

Studied at a sufficiently high resolution, the atomic nucleus thus

presents itself as containing quarks that interact by exchanging gluons,

while at a lower resolution it presents itself as containing protons and neu-

trons that interact by exchanging mesons. The force that binds the pro-

tons and neutrons in a nucleus turns out to be a residue of the strong

force, comparable to the interactions between the permanent or induced

dipole moments of electrically neutral atoms or molecules, which are resid-

ual manifestations of the electrostatic force between electrically charged

particles.

15.9.5 Electroweak interactions

The construction of the electroweak Lagrangian is rather more involved.

One of its salient features is that the left-handed leptons enter differently

from the right-handed ones. So what are leptons and what is meant by

their handedness?

The fundamental particles of the Standard Model are the quarks, which

interact via the strong force, and the leptons, which do not. There are six

types of quark or quark “flavor” (d, u, s, c, b, t) and six leptons (the elec-

tron e, the muon µ, the tauon τ , and three corresponding neutrinos νe,

νµ, ντ ). These particles group themselves into three generations. The first

generation contains the d and u (“down” and “up”) quarks, the electron,
6Here is a simple illustration of confinement: Imagine trying to separate the quark q

from the antiquark q in a meson qq. The energy required to do this grows with the
distance between the two quarks. At some point the energy supplied is enough to create
a new quark-antiquark pair, q′ and q′, so that you end up with two mesons, qq′ and q′q,
instead of two separate quarks.
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and the electron–neutrino; the second contains the s and c (“strange” and

“charmed”) quarks, the µ, and the νµ; the third contains the b and t (“bot-

tom” and “top”) quarks, the τ , and the ντ . Except for their masses, the

particles of the second and third generations have the same properties, and

thus interact in the same way, as the corresponding particles of the first

generation. It will therefore suffice to consider only the first generation.7

As to the handedness of leptons, a spin-1/2 particle in a momentum

eigenstate defines a spatial axis by the direction of the corresponding eigen-

value p. If a measurement of the particle’s spin with respect to this axis

yields “up” with probability 1, the particle is said to be right-handed, and

if it yields “down” with probability 1, the particle is said to be left-handed.

The left-handed leptons (and therefore also the right-handed anti-

leptons) interact via the weak force; the right-handed leptons do not “feel”

this force. The lepton part of the Lagrangian therefore contains two terms,

a “right-handed” one constructed so as to make it invariant only under

local U(1) transformations, and a “left-handed” one constructed so as to

make it invariant under both local U(1) transformations and local SU(2)

transformations. Thus there will be a U(1) gauge field Bk and an SU(2)

gauge field Ca
k . Apart from the differential treatment of left-handed and

right-handed leptons and the absence of a lepton mass term corresponding

to −ψmψ in the Dirac Lagrangian (15.25), the construction of these parts

follows the standard recipe. So does the construction of the pure gauge

field part.

15.9.6 Higgs mechanism

But that’s only the beginning, as it were. The bosons that are said to

“mediate” the weak force are known to have large masses, yet the inclusion

of an explicit mass term for the SU(2) gauge field would destroy the gauge

invariance and render the theory non-renormalizable. The answer to this

conundrum is a procedure that, for brevity, is often referred to as “Higgs

mechanism.”

The first step of this procedure is to introduce a spin-0 field φ . The

next step is to create a degeneracy of the vacuum state by adopting a

particular combination of a term quartic in φ and a term quadratic in φ .

(The vacuum state is the quantum state with the lowest possible energy.

Saying that it is degenerate is the same as saying that it is not unique.) To

7We are here glossing over the mixing of flavors of different generations in the eletroweak
Lagrangian.
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again have a unique vacuum state, one defines new fields in terms of the ones

so far present in the Lagrangian, and one “fixes the gauge” (i.e., chooses a

specific gauge) by performing a specific gauge transformation. As a result,

the SU(2) symmetry is “spontaneously broken.” (This is something of a

misnomer, as fixing the gauge is a rather deliberate process.) The new

fields are associated with three massive spin-1 bosons, the W± and the Z0

(which are said to “mediate” the weak force), the massless photon, and the

massive spin-0 Higgs boson (whose existence has not been experimentally

confirmed at the time of this writing).

The electroweak Lagrangian also contains an interaction term for the

leptons and the Higgs. When applied to this term, the Higgs mechanism

gives rise to a mass term for the leptons. When quarks are included (again

without a mass term in the original Lagrangian), they too end up having

masses courtesy of the Higgs mechanism. Unsurprisingly, therefore, this

procedure has been hailed as explaining why particles have mass. But does

it meet what is expected of an explanation?

To keep our feet on the ground, we must not forget that what we are

dealing with is essentially a mathematical tool for calculating scattering

amplitudes. Given the numbers, types, and 4-momenta of the incoming

particles, this puts us in a position to calculate the probabilities for all

possible combinations of outgoing particles. What it does not furnish is a

clue to the nature of the underlying physical mechanism or process—if at

all there is such a thing. How then could it furnish a clue to the creation of

mass, even if mass were some kind of stuff or thing, rather than a parameter

of a calculational tool. All that is achieved by the Higgs mechanism—and

this is feat enough—is the computability of scattering amplitudes involv-

ing weak interactions, by giving rise to mass terms without jeopardizing

renormalizability.
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Chapter 16

Pitfalls

16.1 Standard axioms: A critique

There can be little doubt that the most effective way of introducing the

mathematical formalism of quantum mechanics is the axiomatic approach.

Philosophically, however, this has its dangers. Axioms are supposed to

be clear and compelling. The standard axioms of quantum mechanics are

neither. Because they lack a convincing physical motivation, students—but

not only students—tend to accept them as ultimate encapsulations of the

way things are.

The first standard axiom typically tells us that the state of a system S

is (or is represented by) a normalized element |v〉 of a Hilbert space HS .1

The next axiom usually states that observables are (or are represented by)

self-adjoint linear operators on HS , and that the possible outcomes of a

measurement of an observable Ô are the eigenvalues of Ô.

Then comes an axiom (or a couple of axioms) concerning the (time)

evolution of states. Between measurements (if not always), states are said

to evolve according to unitary transformations, whereas at the time of a

measurement, they are said to evolve (or appear to evolve) as stipulated by

the projection postulate: if Ô is measured, the subsequent state of S is the

eigenvector corresponding to the outcome, regardless of the previous state

of S.

A further axiom stipulates that the states of composite systems are (or

are represented by) vectors in the direct product of the Hilbert spaces of

the component systems.

Finally there are a couple of axioms concerning probabilities. According

to the first, if S is in the state |v〉, and if we do an experiment to see if it

1Weinberg (1996) is nearer the mark when he represents the state of S by a ray in HS .

225
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has the property |w〉〈w|, then the probability of a positive outcome is given

by the Born rule p = |〈w|v〉|2. According to the second, the expectation

value of an observable Ô in the state |v〉 is 〈v|Ô|v〉.
There is much here that is perplexing if not simply wrong. To begin

with, what is the physical meaning of saying that the state of a system

is (or is represented by) a normalized vector (or else a ray) in a Hilbert

space? The main reason why this question seems virtually unanswerable is

that probabilities are introduced almost as an afterthought. It ought to be

stated at the outset that the mathematical formalism of quantum mechanics

is a probability calculus. It provides us with algorithms for calculating the

probabilities of measurement outcomes.

If both the phase space formalism of classical physics and the Hilbert

space formalism of quantum physics are understood as tools for calcu-

lating the probabilities of measurement outcomes, the transition from a

0-dimensional point in a phase space to a 1-dimensional ray in a Hilbert

space is readily understood as a straightforward way of making room for

nontrivial probabilities (Sec. 8.4). Because the probabilities assigned by

the points of a phase space are trivial, the classical formalism admits of an

alternative interpretation: we may think of (classical) states as collections

of possessed properties. Because the probabilities assigned by the rays of a

Hilbert space are nontrivial, the quantum formalism does not admit of such

an interpretation: we may not think of (quantum) states as collections of

possessed properties.

Saying that the state of a quantum system is (or is represented by) a

vector or a ray in a Hilbert space, is therefore seriously misleading. There

are two kinds of things that can be represented by a vector or a ray in

a Hilbert space: possible measurement outcomes and actual measurement

outcomes. If a possible measurement outcome is represented by a vector

or a ray in a Hilbert space, it is so solely for the purpose of calculating its

probability. If an actual measurement outcome is represented by a vector

or a ray in a Hilbert space, it is so solely for the purpose of assigning

probabilities to the possible outcomes of whichever measurement is made

next. Thus if |v〉 represents the outcome of a maximal test, and if |w〉
represents a possible outcome of the measurement that is made next, then

the probability of that outcome is |〈w|v〉|2. (If the Hamiltonian is not

zero, a unitary operator, taking care of the time difference between the two

measurements, has to be sandwiched between 〈w| and |v〉.)
It is essential to understand that any statement about a quantum sys-

tem between measurements is “not even wrong” in Pauli’s famous phrase,
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inasmuch as such a statement is neither verifiable nor falsifiable. This

bears on the third axiom (or couple of axioms), according to which quan-

tum states evolve (or appear to evolve) unitarily between measurements,

which then implies that they “collapse” (or appear to do so) at the time of

a measurement.

All that can safely be asserted about the time t on which a quantum

state functionally depends is that it refers to the time of a measurement.

If |v(t)〉 represents the outcome of a maximal test on the basis of which

probabilities are assigned, then t is the time of this maximal test. If |w(t)〉
represents one of the possible outcomes of a measurement to which proba-

bilities are assigned, then t is the time of this measurement. What cannot

be asserted without metaphysically embroidering the axioms of quantum

mechanics is that |v(t)〉 is (or represents) an instantaneous state of affairs of

some kind, which evolves from earlier to later times. As Peres (1984) point-

edly observed, “there is no interpolating wave function giving the ‘state of

the system’ between measurements.”

Again, what could be the physical meaning of saying that observables

are (or are represented by) self-adjoint operators? We are left in the dark

until we get to the last couple of axioms, at which point we learn that the ex-

pectation value of an observable V̂ in the state |w〉 is 〈w|V̂|w〉. As we have

seen in Sec. 11.2, if (as a result of a previous measurement) the vector |w〉
is associated with S, and if we contemplate a measurement whose possible

outcomes vk are represented by the projectors |vk〉〈vk |, then we can define

a self-adjoint operator V̂ such that the expectation value
∑

k vk|〈vk |w〉|2
(i.e., the sum over the possible outcomes weighted by their Born probabil-

ities) can be written as 〈w|V̂|w〉.
And finally, why would the state of a composite system be (represented

by) a vector in the direct product of the Hilbert spaces of the compo-

nent systems? Once again the answer is virtually self-evident (Sec. 13.2) if

quantum states are seen for what they are—tools for assigning nontrivial

probabilities to the possible outcomes of measurements.

16.2 The principle of evolution

Why is the fundamental theoretical framework of contemporary physics a

probability calculus, and why are the events to which the probabilities are

assigned measurement outcomes? It seems to me that all previous attempts

to arrive at satisfactory answers to these vexed questions have foundered on
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two assumptions. The first is the notion that physics can be neatly divided

into kinematics, which concerns the description of a system at an instant of

time, and dynamics, which concerns the evolution of a system from earlier

to later times. We may call this notion “the principle (or paradigm) of

evolution.”

By itself, the principle of evolution implies that time is infinitely or

completely differentiated, so that we are permitted to think of it as a set of

temporally unextended instants. In combination with the special theory of

relativity—specifically, its frame-dependent stratification of spacetime into

hyperplanes of constant time—the principle of evolution implies that space,

too, is infinitely or completely differentiated, so that we are permitted to

think of it as a set of (spatially) unextended points. We may call this “the

principle (or paradigm) of complete spatiotemporal differentiation.” As we

shall see, both principles present serious obstacles to making sense of the

quantum theory.

In keeping with the principle of evolution, the wave function ψ(x, t) is

usually awarded the primary status, while the propagator 〈xf , tf |xi, ti〉 is

seen as playing a secondary role, which is to relate the wave function at

different times according to

ψ(xf , tf ) =

∫

dxi 〈xf , tf |xi, ti〉ψ(xi, ti) , (16.1)

notwithstanding that both wave function and propagator encapsulate the

same information. Underlying this partiality towards the wave function is

the idea that wave functions—and quantum states in general—are mean-

ingful constructs even in the absence of measurements. If this were the

case, measurements would merely contribute (or even merely appear to

contribute) to the determination of quantum states, and quantum states

would determine absolute probabilities rather than probabilities that are

always conditional on measurement outcomes.2

The prevalence of these ideas can be traced back to two fortuitous

cases of historical precedence: that of Schrödinger’s “wave mechanics” over

Feynman’s propagator-based formulation of the theory, and that of Kol-

mogorov’s (1950) formulation of probability theory over an axiomatic al-

ternative developed by Rényi (1955, 1970). Every result of Kolmogorov’s

theory has a translation into Rényi’s [Primas (2003)]. Yet whereas in

2The conditionality of quantum-mechanical probabilities—their dependence on actual
measurement outcomes, in addition to the setup-specific boundary conditions under
which they are assigned—has also been stressed by Primas (2003).
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Kolmogorov’s theory absolute probabilities have primacy over conditional

ones, Rényi’s theory is based entirely on conditional probabilities.

The principle of evolution is also at odds with the time-symmetry of

the quantum-mechanical correlation laws. For we can use the Born rule to

retrodict the probabilities of the possible outcomes of an earlier measure-

ment on the basis of the actual outcome of a later measurement as well

as to predict the probabilities of the possible outcomes of a later measure-

ment on the basis of the actual outcome of an earlier measurement. As

Sec. 13.8 has shown, quantum mechanics even allows us to assign prob-

abilities symmetrically with respect to time, on the basis of both earlier

and later outcomes. Positing an interpolating quantum state evolving from

later to earlier measurements would therefore seem just as legitimate—or,

rather, illegitimate—as positing an interpolating quantum state evolving

from earlier to later measurements.

16.3 The eigenstate–eigenvalue link

There is a widely held if not always explicitly stated assumption, which

for many has the status of an additional axiom. This is the so-called

eigenstate-eigenvalue link, according to which a system “in” an eigenstate of

the operator B̂ associated with an observable B possesses the correspond-

ing eigenvalue even if no measurement of B is actually made. Because

the time-dependence of a quantum state is a dependence on the time of a

measurement, rather than the continuous time-dependence of an evolving

state, we need to reject this assumption. All that B̂|v(t)〉 = b |v(t)〉 implies

is that a (successful) measurement of B made at the time t is certain to

yield the outcome b. Probability 1 is not sufficient for “is” or “has.”

If a system’s being in an eigenstate of an observable (qua operator) is

not sufficient for the possession, by the system or the observable, of the

corresponding eigenvalue, then what is? In Chap. 13 we came across sev-

eral experimental arrangements that warranted the following conclusion:

measurements do not reveal pre-existent values; instead, they create their

outcomes. If this is correct, then the only sufficient condition for the exis-

tence of a value v(B) is a measurement of the observable B. Observables

have values only if, only when, and only to the extent that they are mea-

sured. To be is to be measured.3

3This is the idea that Bohr tried to convey by stressing that out of relation to experi-
mental arrangements the properties of quantum systems are undefined [Jammer (1974);
Petersen (1968)].
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There would appear to be a narrow escape route for the proponents

of hidden variable theories: accept the contextuality of pre-existent values

(Sec. 13.4). To many physicists and philosophers of science, this seems too

great a price to pay for the rather modest benefits—essentially psychologi-

cal, they would say—provided by hidden variables.

It seems to me that the attempt to salvage hidden variables through

contextuality is not only costly but also self-defeating. If measurements

create their outcomes, then it is an obvious possibility that the outcome

of a measurement of an observable A depends on what other observables

are measured together with A. But if we are concerned with pre-existent

values, no reference to “measurement” should be made. All we are then

entitled to say is that the value of b2 in array (13.13), for instance, does not

exist independently of the other values in this array. Pre-existent values

only exist as sets. While as a member of a row, b2 has the value −1, as

a member of a column, it has the value +1. But how can one even speak

of such sets if one is not allowed to refer to “measurement”? After all,

membership in the same set is defined by being measured together.
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Interpretational strategy

For those who subscribe to the principle of evolution, the pivotal role

played by measurements in all standard formulations of quantum mechan-

ics is an embarrassment known as the “measurement problem.” As an

anonymous referee for a philosophy of science journal once put it to me,

“to solve this problem means to design an interpretation in which mea-

surement processes are not different in principle from ordinary physical

interactions.” But how can reducing measurements to “ordinary physical

interactions” solve this problem, considering that quantum mechanics de-

scribes “ordinary physical interactions” in terms of correlations between

the probabilities of the possible outcomes of measurements performed on

the interacting systems? This kind of “solution” amounts to sweeping the

problem under the rug.

In reality, to solve the measurement problem means to design an in-

terpretation in which the central role played by measurements in standard

axiomatizations of quantum mechanics is understood. And before it can

be understood, one must acknowledge the obvious: that the formalism of

quantum mechanics is a probability calculus, and that the events to which

this assigns probabilities are measurement outcomes.

An algorithm for assigning probabilities to possible measurement out-

comes on the basis of actual outcomes has two perfectly normal depen-

dences. It depends continuously on the time of measurement: if this changes

by a small amount, the assigned probabilities change by small amounts.

And it depends discontinuously on the outcomes that constitute the assign-

ment basis: if this changes by the inclusion of an outcome not previously

taken into account, so do the assigned probabilities.

But think of a quantum state’s dependence on time as the continuous

time-dependence of an evolving state (rather than as a dependence on the

231
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time of a measurement), and you have two modes of evolution for the price

of one:

(1) between measurements, a quantum state evolves according to a unitary

transformation and thus continuously and predictably;

(2) at the time of a measurement, a quantum state generally “collapses”:

it changes (or appears to change) discontinuously and unpredictably

into a state depending on the measurement’s outcome.

Hence the mother of all quantum-theoretical pseudo-questions: why does

a quantum state have (or appear to have) two modes of evolution? And

hence the embarrassment. Getting rid of the pseudo-question is easy: we

only have to recognize that the true number of modes of evolution is neither

two nor one but zero. Getting rid of the embarrassment requires more work,

for we still have two Rules for the price of one—those stated in Sec. 5.1 and

derived in Sec. 8.13. Why two computational rules? What distinguishes

this question from the above pseudo-question is that it has a straightforward

answer:

Whenever quantum mechanics instructs us to add amplitudes rather than

probabilities (i.e., whenever we are required to use Rule B rather than

Rule A), the distinctions we make between the alternatives correspond to

nothing in the actual world. They don’t exist in the actual world. They

exist solely in our minds.

This answer lies at the heart of the interpretational strategy adopted in the

following pages. It does raise further questions, but it also makes it possible

to answer them. In addition, it does not appeal to untestable metaphysical

assumptions like hidden variables or evolving quantum states but refers

directly to testable computational rules.
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Spatial aspects of the quantum world

18.1 The two-slit experiment revisited

Let us return to the two-slit experiment discussed in Sec. 5.2. This featured

two alternatives:

• The electron went through the left slit (L).

• The electron went through the right slit (R).

Under the conditions stipulated by Rule A (Sec. 5.1), the probability of

detection by a detector (located at) D is the sum of two probabilities, pL =

|AL|2 and pR = |AR|2, where AL and AR are the amplitudes associated

with the alternatives. This is consistent with the view that an electron

detected at D went through either the left slit or the right slit.

Let us try to understand what happened, under the conditions stipu-

lated by Rule B, when an electron is detected at D. Let us assume, to

begin with, that

(1) each electron goes through a particular slit (either L or R),

(2) the behavior of electrons that go through a given slit does not depend

on whether the other slit is open or shut.

If the first assumption is true, then the distribution of hits across the back-

drop, when both slits are open, is given by

n(x) = nL(x) + nR(x), (18.1)

where nL(x) and nR(x) are the respective distributions of hits from elec-

trons that went through L and electrons that went through R. If the second

assumption is true, then we can observe nL(x) by keeping the right slit shut,

and we can observe nR(x) by keeping the left slit shut. What we observe

when the right slit is shut is the dotted hump on the left side of Fig. 5.2,
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and what we observe when the left slit is shut is the dotted hump on the

right side of this figure. If both assumptions are true, we thus expect to

observe the sum of these two humps. But this is what we observe under

the conditions stipulated by Rule A. What we observe under the conditions

stipulated by Rule B is the interference pattern plotted in Fig. 5.3. At least

one of the two assumptions is therefore false.

18.1.1 Bohmian mechanics

According to an interpretational strategy proposed by Bohm (1952), only

the second assumption is false: all electrons follow well-defined paths, which

wiggle in a peculiar manner and cluster at the backdrop so as to produce

the observed distribution of hits.

What causes the wiggles? Bohmians explain this by positing the ex-

istence of a “pilot wave” that guides the electrons by exerting on them a

force. If both slits are open, it passes through both slits. The secondary

waves emanating from the slits interfere, with the result that the electrons

are guided along wiggly paths.

The reason why, according to Bohmians, electrons emerging from the

same source or the same slit arrive in different places, is that they start

out in slightly different directions and/or with slightly different speeds. If

we had precise knowledge of these initial values, we would be in a posi-

tion to predict each electron’s future motion with classical precision. Since

quantum mechanics says that such knowledge cannot be had, Bohmians

must say that, although well-defined electron paths and exact initial values

exist, they are hidden from us. What they do not say is why these things

are hidden from us, in spite of the fact that there is a simple answer to this

question: they are hidden from us because they do not exist.

Bohmian mechanics is an extreme instantiation of the principle of evolu-

tion. It not only posits a wave function that evolves between measurements

but also attributes to it the reality of a classical force acting on classical

particles, in blithe disregard of the fact that the pilot wave associated with a

physical system with n degrees of freedom propagates in an n-dimensional

configuration space, which can be identified with physical space only if

n = 3.1

1Another unpalatable feature that ought to be mentioned is that on this theory energy
and momentum and spin and every particle property other than position are contextual
[Albert (1992)].
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18.1.2 The meaning of “both”

We are committed by our own interpretational strategy to conclude that the

first assumption is wrong (in which case the second assumption is vacuous).

Under the conditions stipulated by Rule B, each electron does in some sense

pass through both slits. What does this mean? Saying that an electron went

through both slits cannot be equivalent to the conjunction

“(the electron went through L) and (the electron went through R).”

To ascertain the truth of a conjunction, we must individually ascertain the

truths of its components, yet we never find (i) that an electron launched at

G and detected at D has taken the left slit and (ii) that the same electron

has taken the right slit.

Nor can saying that an electron went through both slits mean that a

part of the electron went through L and another part went through R.

In fact, the question of parts does not arise. Analogous experiments have

been performed with C60 molecules using a grating with 50 nm wide slits

and a period of 100 nm [Arndt et al. (1999)]. The sixty carbon nuclei of

C60 are arranged like the corners of soccer ball just 0.7 nm across. We do

not picture parts of such a molecule as getting separated by many times

100nm and then reassemble into a ball less than a nanometer across.

Saying that an electron went through both slits can only mean that

it went through L&R—the cutouts in the slit plate considered as an un-

differentiated whole. Whenever Rule B applies, the distinction we make

between L and R is a distinction that has no reality as far as the electron

is concerned. In other words, the distinction between “the electron went

through L” and “the electron went through R” is a distinction that “Na-

ture does not make”—it corresponds to nothing in the actual world. The

position at which the electron passed the slit plate is the entire undifferen-

tiated region L&R, or the entire undifferentiated union of two segments of

a spatial plane. It is not any part or segment of L&R, let alone a point in

L&R.

18.2 The importance of unperformed measurements

Take another look at Fig. 11.4. As stated in Sec. 11.8, what we see in

these images is neither the nucleus nor the electron but the fuzzy relative

position between the electron and the nucleus in various stationary states

of atomic hydrogen. Nor do we see this fuzzy position “as it is.” What
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we see is the plot of a position probability distribution, which depends

on the outcomes of measurements determining the values of the atomic

quantum numbers n, l, and m. This distribution both quantifies and

defines the fuzzy relative position between the electron and the nucleus,

by assigning probabilities counterfactually, to the possible outcomes of un-

performed measurements.

To elucidate this point, I ask you to imagine a small bounded region V

in the imaginary space of sharp positions relative to the proton, well inside

the probability distribution associated with the electron’s position relative

to the proton. As long as this distribution is associated with the atom, the

electron is neither inside V nor outside V . (If it were inside, the probabil-

ity of finding it inside would be 1, and if it were outside, the probability

of finding it inside would be 0, neither of which is the case.) If on the

other hand we were to ascertain (by making the appropriate measurement)

whether the electron was inside V or outside V , we would find it either

inside V or outside V . We would change the fuzzy position we meant to

describe, quantify, or define. Hence if we want to quantitatively describe a

fuzzy observable, we must assume that a measurement is made, and if we

do not want to change the observable in the process of describing it, we

must assume that no measurement is made.2 In other words, we must de-

scribe it by assigning probabilities to the possible outcomes of unperformed

measurements.

The fact that fuzzy observables are quantified by assigning probabilities

to the possible outcomes of (unperformed) measurements, goes a long way

towards explaining why quantum mechanics is a probability calculus, and

why measurements enjoy the special status that they do. It also shows that

Bell’s criticism was beside the point. “To restrict quantum mechanics to

be exclusively about piddling laboratory operations is to betray the great

enterprise,” he wrote [Bell (1990)]. The unperformed measurements that

are key to the quantitative description of fuzzy observables cannot be called

“piddling laboratory operations,” nor is the occurrence of measurements

restricted to laboratories. Any event or state of affairs from which either

the truth or the falsity of a proposition of the form “system S has the

property P” (or “observable O has the value V ”) can be inferred, qualifies

as a measurement.

2This is not a contradiction but the very meaning of a counterfactual statement.



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

Spatial aspects of the quantum world 237

18.3 Spatial distinctions: Relative and contingent

What kind of relation exists between an electron and a region V if the

electron is neither inside V nor outside V ? If, as appears to be the case,

being inside and being outside are the only relations that can hold between

an object’s position and a region of space, then no kind of relation exists

between the electron and V . In this case V simply does not exist as far

as the electron is concerned. And since conceiving of a region V is tan-

tamount to making the distinction between “inside V ” and “outside V ,”

we are led to conclude again that the distinction we make between “inside

V ” and “outside V ” has no reality for the electron. The distinction we

make between “the electron is inside V ” and “the electron is outside V ”

corresponds to nothing in the actual world.

It follows that the reality of a spatial distinction is relative: the distinc-

tion we make between disjoint regions may exist for one object at one time

and not exist for a different object at the same time or for the same object

at a different time. To give an example, a device capable of indicating the

slit taken by an electron may not always function as intended—no detector

is 100% efficient. If it functioned as intended, a relation existed between

each slit and the position of the electron at the time when it passed the slit

plate. The propositions “the electron went through L” and “the electron

went through R” are both in possession of truth values: one is true, the

other is false. In this case the distinction between L and R has been real

for the electron. If on the other hand the device failed to indicate the slit

taken by an electron, neither proposition has a truth value, and no relation

existed between the electron and either slit. In this case the distinction we

make between L and R did not exist as far as this electron is concerned.

The reality of a spatial distinction is also contingent : whether the dis-

tinction we make between “inside V ” and “outside V ” is real for a given

object O at a given time t depends on whether the proposition ”O is in V

at t” has a truth value (either “true” or “false”), and this in turn depends

on whether either O’s presence in V or O’s absence from V (at the time t)

is indicated by an actual event or state of affairs.

18.4 The importance of detectors

If the reality of spatial distinctions is relative and contingent, physical space

cannot be something that by itself has parts. For if the regions defined by
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any conceivable partition were intrinsic to space, and therefore distinct by

themselves, the distinctions we make between them would be real for every

object in space. It follows that a detector is needed not only to indicate the

presence of an object in its sensitive region R but also, and in the first place,

to realize (make real) a region R, by realizing the distinction between being

inside R and being outside R. It thereby makes the predicates “inside R”

and “outside R” available for attribution.

And this bears generalization, not least because “in physics the only ob-

servations we must consider are position observations, if only the positions

of instrument pointers” [Bell (1987), p. 166]. The measurement apparatus

that is presupposed by every quantum-mechanical probability assignment

is needed not only for the purpose of indicating the possession of a partic-

ular property or value but also, and in the first place, for the purpose of

realizing a set of attributable properties or values.3

18.4.1 A possible objection

Suppose that W ⊂ V ′, where V ′ is the spatial complement of V , and that

the presence of O in V is indicated. Is not O’s absence from W indicated

as well? Are we not entitled to infer that the proposition “O is in W” has

a truth value—namely, “false”?

Because regions of space do not exist by themselves, the answer is neg-

ative. If W is not realized by being the sensitive region of a detector in the

broadest sense of the word—anything capable of indicating the presence of

something somewhere—then W does not exist, and if it does not exist, then

the proposition “O is in W” cannot be in possession of a truth value. Nei-

ther the property of being inside W nor the property of being outside W is

available for attribution to O. All we can infer from O’s indicated presence

in V is the truth of a counterfactual: if W were the sensitive region of a

detector D, then O would not be detected by D.

18.5 Spatiotemporal distinctions: Not all the way down

In a non-relativistic world, the exact localization of a particle implies an

infinite momentum dispersion and, consequently, an infinite mean energy.

In a relativistic world, the attempt to produce a strictly localized particle
3For instance, when measuring a spin component, the apparatus is needed not only to

indicate the component’s value but also to realize the axis with respect to which the
component is defined.
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results instead in the creation of particle-antiparticle pairs. It is therefore

safe to say that no material object ever has a sharp position (relative to

any other object). This implies something of paramount importance: the

spatiotemporal differentiation of the physical world is incomplete—it does

not go “all the way down.”

To see what exactly this means, let IR3(O) be the set of (imaginary)

exact positions relative to some object O. If no material object ever has a

sharp position, we can conceive of a partition of IR3(O) into finite regions

that are so small that none of them is the sensitive region of an actually

existing detector. Hence we can conceive of a partition of IR3(O) into

sufficiently small but finite regions Rk of which the following is true: there

is no object Q and no region Rk such that the proposition “Q is inside Rk”

has a truth value. In other words, there is no object Q and no region Rk

such that Rk exists for Q. But if a region of space does not exist for any

material object, it does not exist at all. The regions Rk—or the distinctions

we make between them—correspond to nothing in the actual world. They

exist solely in our minds.

What holds for the world’s spatial differentiation also holds for its tem-

poral differentiation. The times at which observables possess values, like the

values themselves, must be indicated in order to exist. Clocks are needed

not only to indicate time but also, and in the first place, to make times

available for attribution to indicated values. Since clocks indicate times by

the positions of their hands, the world’s incomplete temporal differentiation

follows from its incomplete spatial differentiation.4

What about the temporal differentiation of a quantum system? If the

times that exist for it are the indicated times of possession of a property

(by the system) or of a value (by an observable pertaining to the system),

then the interval between two successive such times only exists as an un-

differentiated whole. This is another reason why we need to reject the

so-called eigenstate–eigenvalue link (Sec. 16.3). Not only b must be made

attributable by some apparatus before it can be attributed to B, but also

t must be made attributable by some clocklike apparatus before it can be

the time at which b is possessed by B.

4Digital clocks indicate times by transitions from one reading to another, without
hands. The uncertainty principle for energy and time, however, implies that such a
transition cannot occur at an exact time, except in the unphysical limit of infinite mean
energy [Hilgevoord (1998)].
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18.6 The shapes of things

There is one notion that is decidedly at odds with the incomplete spatial

differentiation of the physical world. It is the notion that the “ultimate

constituents” of matter are pointlike (or, God help us, stringlike [Green

et al. (1988)]). A fundamental particle—in the context of the Standard

Model, a lepton or a quark—is a particle that lacks internal structure. It

lacks internal relations; equivalently, it lacks parts. This could mean that

it is a pointlike object, but it could also mean that it is formless.5

What does the theory have to say on this issue? It obviously favors

the latter possibility, inasmuch as nothing in the formalism of quantum

mechanics refers to the shape of an object that lacks internal structure.

And experiments? While they can provide evidence of internal struc-

ture, they cannot provide evidence of the absence of internal structure.

Hence they cannot provide evidence of a pointlike form.

The notion that an object without internal structure has a pointlike

form—or any form—is therefore unwarranted on both theoretical and ex-

perimental grounds. In addition, it explains nothing. Specifically, it does

not explain why a composite object—be it a nucleon, a molecule, or a

galaxy—has the shape that it does, inasmuch as all empirically accessible

forms are fully accounted for by the relative positions (and orientations) of

their material constituents. All it does is encumber our efforts to make sense

of the quantum world with a type of form whose existence is completely

unverifiable, which is explanatorily completely useless, and which differs

radically from all empirically accessible forms. By rejecting this notion we

obtain an appealingly uniform concept of form, since then all forms resolve

themselves into sets of spatial relations—between parts whose forms are

themselves sets of spatial relations, and ultimately between formless parts.

18.7 Space

Consider once more the fuzzy positions in Fig. 11.4. Does the expanse over

which these positions are “smeared out” have parts? If it had, the positions

themselves would have parts; they would be divided by the parts of space.

But this makes no sense. One can divide an object, and thereby create as

5In order to leave a visible trace (a string of bubbles in a bubble chamber, a trail of
droplets in a cloud chamber, or some such) an electron does not need a shape; it only
needs to be there. In fact, it is was where it was only because its past whereabouts are
indicated by bubbles or droplets or some such.
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many positions as there are parts—or create as many relative positions as

there are pairs of parts—but one cannot divide a position. The expanse

over which a fuzzy position is probabilistically distributed therefore lacks

parts. This confirms a conclusion we arrived at in Sec. 18.4: physical space

cannot be something that has parts. If at all we think of it as an expanse,

we must think of it as intrinsically undivided.

Alternatively we may attribute spatiality not to an expanse (to which

relative positions owe their spatial character) but to the relative positions

themselves, as a quality6 they share. If we do so, we have no need to posit

an independently existing expanse. Space itself can then be thought of as

the set of all relations that share this quality, i.e., as the totality of spatial

relations that exist between material objects.7

If we think this through, we arrive at the following conclusions: Space

contains the forms of all things that have forms, for the totality of spatial

relations contains—in the proper, set-theoretic sense of containment—the

specific sets of spatial relations that constitute material forms. But it does

not contain the corresponding relata—the formless “ultimate constituents”

of matter. And if we give the name of “matter” to these “ultimate con-

stituents,” it does not contain matter.

6Like pink or turquoise, spatial extension is a qualitative property that can only be
defined by ostentation—by drawing attention to something of which we are directly
aware. While it can lend a phenomenal quality to numbers, it cannot be reduced to
numbers. If you are not convinced, try to explain to my friend Andy, who lives in a
spaceless world, what phenomenal space is like. Andy is good at math, so he understands
you perfectly if you tell him that space is like the set of all triplets of real numbers. But
if you believe that this gives him a sense of the expanse we call space, you are deluding
yourself. We can imagine triplets of real numbers as points embedded in space; he
can’t. We can interpret the difference between two numbers as the distance between
two points; he can’t. At any rate, he can’t associate with the word “distance” the
phenomenal remoteness it conveys to us.
7This way of thinking is close to relationism, the doctrine that space and time are a

family of spatial and temporal relations holding among the material constituents of the
universe. A common objection to this doctrine is the claim that it fails to accommodate
inertial effects. See Dieks (2001a,b) for a refutation of this claim.
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Chapter 19

The macroworld

Making sense of the theoretical formalism of quantum mechanics calls for a

judicious choice on our part. We need to identify that substructure of the

theory’s entire structure to which independent reality can be attributed. If

observables have values only if (and only to the extent that) they are mea-

sured, this cannot be the microworld, nor any part thereof. The microworld

is what it is because of what happens or is the case in the macroworld, rather

than the other way round, as we are wont to think. This leaves us with

the macroworld as the only structure to which independent reality can be

attributed. It also leaves us with the task of defining the macroworld and

rigorously distinguishing it from the microworld.

A definition, to begin with: by a classically predictable position I shall

mean a position that can be predicted on the basis of (i) a classical law of

motion and (ii) all relevant value-indicating events.

An observation, next: The possibility of obtaining evidence of the de-

parture of an object O from its classically predictable position calls for

detectors whose position probability distributions are narrower than O’s—

detectors that can probe the region over which O’s fuzzy position extends.

For objects with sufficiently sharp positions, such detectors do not exist.

For the objects commonly and loosely referred to as “macroscopic,” the

probability of obtaining evidence of departures from their classically pre-

dictable motion will thus be low. Hence among these objects, there will be

many of which the following is true: every one of their indicated positions is

consistent with every prediction that can be made on the basis of previously

indicated properties and a classical law of motion. These are the objects

that truly deserve the label macroscopic. To permit a macroscopic object—

e.g., the proverbial pointer needle—to indicate the value of an observable,

one exception has to be made: its position may change unpredictably if

and when it serves to indicate a property or a value.
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We are now in position to define the macroworld unambiguously as the

totality of relative positions between macroscopic objects. Let’s shorten

this to macroscopic positions. By definition, macroscopic positions never

evince their fuzziness (in the only way they could, through departures from

classically predicted values). Macroscopic objects therefore follow trajecto-

ries that are only counterfactually fuzzy: their positions are fuzzy only in

relation to an imaginary background that is more differentiated spacewise

than is the actual world. This is what makes it legitimate to attribute to

the macroworld a reality independent of anything external to it—such as

the consciousness of an observer1—and not merely “for all practical pur-

poses” but strictly. And this in turn allows us to state the manner in which

measurement outcomes are indicated. They are indicated by departures of

macroscopic positions from their respective classical laws of motion.

But cannot the information provided by an outcome-indicating position

be lost? A position that has departed from a classical law of motion once,

to indicate a measurement outcome, may do so again, and may thereby lose

the information about the outcome. This however does not mean that no

record of the outcome persists. For the positions of macroscopic objects are

abundantly monitored. Suppose that at the time t2 a macroscopic position

loses information about an outcome that it acquired at the time t1. In

the interim, a large number of macroscopic positions—among them macro-

scopic positions in the stricter sense—have acquired information about this

position, and hence about the outcome that was indicated by it. Even

if this position ceases to indicate the outcome, a record of the outcome

persists.

I am not saying that macroscopic positions are exempted from our con-

clusion that to be is to be measured. Where macroscopic positions are

concerned, this conclusion is not false but irrelevant. While even the Moon

has a position only because of the myriad of “pointer positions” that be-

token its whereabouts, macroscopic positions indicate each other’s values

so abundantly, so persistently, and so sharply that they are only counter-

factually fuzzy. This is what makes it possible (and perfectly legitimate)

to think of the positions of macroscopic objects as forming a self-contained

1In the context of quantum mechanics, consciousness has mainly been invoked to explain
the so-called “collapse of the wave function” [Goswami (1995); Lockwood (1989); London
and Bauer (1939); Squires (1990); Stapp (2001); von Neumann (1955); Wigner (1961)].
While this offers a gratuitous solution to a pseudo-problem arising from the mistaken
belief that wave functions evolve, it obfuscate the real interpretational problems, such as
demonstrating the legitimacy of attributing an independent reality to the macroworld.
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system—the macroworld—and to attribute to this system a reality that

depends on nothing external to it.

Let me emphasize, in conclusion, the crucial role played by the incom-

plete spatiotemporal differentiation of the physical world in defining the

macroworld and in demonstrating the legitimacy of attributing to it an

independent reality.
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Chapter 20

Questions of substance

If the properties of the microworld are what they are because of what

happens or is the case in the macroworld, rather than the other way around,

then we cannot think of particles, atoms, and such as constituents of the

macroworld. Then what is it that constitutes the macroworld? And what

is a particle if it is not a constituent of the macroworld?

20.1 Particles

What we know about particles is what we can infer from correlations be-

tween “detector clicks.” If we perform a series of position measurements,

and if every position measurement yields exactly one outcome (i.e., each

time exactly one detector clicks), then we are entitled to infer the existence

of an entity O which persists through time, to think of the clicks given

off by the detectors as indicating the successive positions of this entity, to

think of the behavior of the detectors as position measurements, and to

think of the detectors as detectors.

Things already get more complicated if each time exactly two detectors

click. Are we entitled to infer from this the existence of two persistent

entities?

20.2 Scattering experiment revisited

Let us return to the scattering experiment discussed in Sec. 14.2. This

featured two alternatives:

• N→W and S→E .

• N→E and S→W .
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Under the conditions stipulated by Rule A (Sec. 5.1), the probability with

which the particles scatter at right angles is the sum of two terms:

p⊥ = |A(N→W,S→E)|2 + |A(N→E, S→W )|2.
This is consistent with the view that whenever the incoming particles were

moving northward and southward, respectively, and the outgoing particles

were moving eastward and westward, respectively, what really happened

was either of the alternatives.

Under the conditions stipulated by Rule B, the probability with which

the particles scatter at right angles is given by

p⊥ = |A(N→W,S→E) +A(N→E, S→W )|2.
In this case, we concluded, what really happened cannot be either of the

alternatives. In other words, there is no answer to the question “Which

outgoing particle is identical with which incoming particle?” But a question

that has no answer is a meaningless question.

Here as elsewhere, the challenge is to learn to think in ways that do

not lead to meaningless questions. The question “Which is which?” arises

because we assume that initially there are two things, one moving north-

ward and one moving southward, that in the end there are two things, one

moving eastward and one moving westward, and that each of these things

remains identical with itself.

What if we assumed instead that initially there is one thing moving

both northward and southward, and that in the end there is one thing

moving both eastward and westward? Startling though this assumption

may be, it has this advantage that the meaningless question “Which is

which?” can no longer be asked. It is, moreover, the conclusion to which our

interpretational strategy points. For this requires us to think in such a way

that the distinction we make between the alternatives does not correspond

to anything in the actual world. But it is precisely the idea that there are

two particles over and above two sets of initial properties denoted by N

and S and two sets of final properties denoted by E and W , that compels

us to regard the two alternatives as objectively distinct.

20.3 How many constituents?

Returning to where we left off in Sec. 20.1, if each time two detectors click,

and if the question “Which of the particles detected at t1 is identical with

which of the particles detected at t2?” lacks an answer, then we are in the
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presence of a single entity with the property of being in two places whenever

we check—not a system “made up” of two things but one thing with the

property of being in two places every time a position measurement is made

using an array of detectors.

Adopting the definitions of substance and property introduced by Aris-

totle,1 we may say that a quantum system is always a single substance,

while the number of its so-called “components” or “constituent parts” is

just one of its measurable properties. Whereas in a non-relativistic context

this property is constant, in a relativistic setting it can come out different

every time it is measured. Hence if we permit ourselves to think of the

physical universe as a quantum system and to ask about the number of its

constituent substances, we find that there is just one. The rest is properties.

Quantum mechanics lends unstinting support to the central idea of all truly

monistic ontologies: ultimately there is only one substance.

20.4 An ancient conundrum

Imagine that in front of you there are two exactly similar objects. Because

they are in different places, they are different objects. But is their being in

different places the sole reason for their being different objects?

For centuries philosophers have debated this question. Those uniniti-

ated into the mysteries of the quantum world are inclined to think that

the difference between the two objects does not boil down to their being

in different places; there has to be another difference. But what could that

be?

It has been argued that the two objects, in addition to being in different

places, are different substances. But how can one substance—by itself,

intrinsically, irrespective of attributes—differ from another? How—come

to think of it—can there be more than one substance (considered out of

relation to attributes by which substances could be distinguished)?

To escape this quandary, some philosophers have postulated the prop-

erty of being “this very object.” According to them, two exactly similar

objects in different places are different not only because they are in differ-

ent places but also because one has the property of being “this very thing”

while the other has the property of being “that very thing.” Demonstrative

1According to Aristotle, a property is that in the world to which a logical or grammatical
predicate can refer, whereas a substance is that in the world to which only a logical or
grammatical subject can refer.
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determiners like “this” and “that,” however, distinguish things by pointing

at them, and this is the same as distinguishing things by their positions.

So this “solution” is but a reformulation of the problem.

Thanks to quantum mechanics, we know now why such attempts were

bound to fail. Quantum mechanics does not permit us to interpose a mul-

titude of distinct substances between the one ultimately existing substance

and the multitude of existing (“possessed”) positions or the multitude of

existing (“possessed”) bundles of properties. Individuality is strictly matter

of properties. (The same was in fact true of the deterministically evolving

fantasy world of classical physics. But since the determinism of that world

made it possible in principle to keep track of the identities of objects, it did

not prevent people from associating a distinct substance with each object,

however redundantly.)

20.5 A fundamental particle by itself

Consider, finally, a fundamental particle “by itself,” out of relation to any-

thing else. What can we say about it? Apart from pointing out that it

lacks a form, and that space (considered as the totality of spatial relations

existing between material objects) does not contain it (Sec. 18.7), the plain

and simple answer is: nothing. For the properties that are attributable to

fundamental particles are either relational, like positions and momenta, or

characteristic of interactions, like coupling parameters (charges), or they

have objective significance independent of conventions only as dimension-

less ratios, like mass ratios. They all involve more than one particle.

According to a philosophical principle known as the identity of indis-

cernibles, what appears to be two things A and B is actually one and the

same thing just in case there is no difference between A and B. Although

there is nothing so obvious that a philosopher cannot be found to deny it,

this principle strikes me as self-evident. If true, it implies that all funda-

mental particles considered by themselves, out of relation to anything else,

are identical in the strong sense of numerical identity.2 Hence if we think

of fundamental particles as the “ultimate constituents of matter,” there is

a clear sense in which the actual number of ultimate constituents is one.

2Numerical identity contrasts with qualitative identity or exact similarity. Examples
of numerical identity are (i) the evening star and the morning star, (ii) Clark Kent and
Superman.
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Chapter 21

Manifestation

21.1 “Creation” in a nutshell

If all fundamental particles in existence—considered by themselves, apart

from their relations—are identical in the strong sense of numerical identity

(Sec. 20.5), we are in a position to account for the coming into being of

both matter and space in a manner that is elegant and economical by any

standard. All we still need is a name for the one substance that every

fundamental particle intrinsically is. We shall call it Ultimate Reality and

abbreviate it to UR, mindful of the fact that the prefix “ur-” carries the

sense of “original.”

Here goes: by entering into spatial relations with itself, UR creates both

matter and space, for space is the totality of existing spatial relations,

while matter is the corresponding apparent multitude of relata—apparent

because the relations are self -relations.

21.2 The coming into being of form

If fundamental particles are formless (Sec. 18.6), we are also in a position

to understand the coming into being of form.

Forms in the most general sense are sets of spatial relations in more or

less stable configurations. They come into existence through aggregation—

the formation of composite objects or bound states. Because they exist in

multi-dimensional configuration spaces, as probability distributions, they

cannot be visualized (or cannot be visualized except as multi-dimensional

probability distributions).

The smallest structures that can be visualized consist of the mean

relative positions of a molecule’s constituent nuclei—the sticks of your

251
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chemistry teacher’s balls-and-sticks models of molecules. What makes these

structures visualizable is the fact that the fuzziness of the relative positions

of the nuclei (as measured by the standard deviations of the correspond-

ing probability distributions) is generally small compared to the relative

positions themselves (as given by their mean values).

From simple molecules, a well-known hierarchy of objects of increasing

complexity and/or size then reaches up to the familiar forms of macroscopic

experience.

21.3 Bottom-up or top-down?

For at least twenty-five centuries, theorists—from metaphysicians to natural

philosophers to physicists and philosophers of science—have tried to explain

the world from the bottom up, starting from an ultimate multiplicity and

using concepts of composition and interaction as their basic explanatory

tools. And still it does not strike us that the attempt to model reality from

the bottom up—whether on the basis of an intrinsically and completely

differentiated space or spacetime, out of locally instantiated physical prop-

erties, or by aggregation, out of a multitude of individual substances—is

at odds with what quantum mechanics is trying to tell us: that reality is

structured from the top down, by a self-differentiation of UR that does not

bottom out.

The reason why it does not bottom out is that the distinctions we

make—be they of a spatial or a substantial kind—are warranted by nothing

but property-indicating events (Sec. 16.3), and these do not license an ab-

solute and unlimited objectification of our distinctions. If we conceptually

partition the physical world into smaller and smaller regions, we reach a

point where our distinctions between the regions no longer correspond to

anything in the physical world (Sec. 18.5), and if we go on dividing material

objects, they lose their individuality by ceasing to be re-identifiable.

The idea that reality is structured from the top down is traditionally

associated with the concept of manifestation: there is an Ultimate Reality

or Pure Being, which manifests the world or manifests itself as the world

(without thereby losing its essential unity). It does not get divided by

the existence of space, for if space is an expanse, it is undifferentiated,

and if space is the totality of existing spatial relations, the corresponding

(ultimate) relata are numerically identical.

Adopting the top-down paradigm of manifestation, we identify the
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macroworld with the manifested world. The so-called microworld, extend-

ing as it were between UR and the macroworld, is instrumental in the

manifestation of the macroworld. Quantum mechanics affords us a glimpse

“behind” the manifested world at formless and numerically identical parti-

cles, non-visualizable atoms, and partly visualizable molecules, which, in-

stead of being the world’s constituent parts or structures, are instrumental

in its manifestation.

The fact that the microworld is what it is because of what happens

or is the case in the macroworld, rather than the other way round, now

presents itself in a new light. There is a clear-cut difference between the

manifested world and what is instrumental in its manifestation, and it

makes good sense that what is instrumental in the world’s manifestation

can only be described—in fact, can only be defined—in terms of the finished

product, the manifested world. The process of manifestation is a transition

from numerical identity to effective multiplicity, a progressive differentiation

of the undifferentiated. What lies “behind” the manifested world is, to

varying degrees, indefinite and indistinguishable. But in order to describe—

and even define—the indefinite and indistinguishable, we have to resort to

probability distributions over events that are definite and distinguishable,

and such events only exist in the manifested world.

21.4 Whence the quantum-mechanical correlation laws?

One thing seems certain: the attempt to causally1 explain the quantum-

mechanical correlation laws puts the cart before the horse. For it is the

correlation laws themselves that tell us why causal explanations work to

the extent they do. They work in the macroworld, inasmuch as the corre-

lations between macroscopic positions evince no statistical variations. Be-

cause macroscopic positions are only counterfactually fuzzy (Chap. 19),

their correlations are effectively deterministic, and deterministic correla-

tions lend themselves to causal interpretations. What lies “behind” the

macroworld, on the other hand, is out of bounds for the concept of cau-

sation—at least the “ordinary” kind, which links objects or events across

space and/or time.

It is equally clear that a fundamental theory cannot be explained with

the help of a “more fundamental” theory. We sometimes speak loosely of a

1Let alone mechanistically: “There are no ‘wheels and gears’ beneath this analysis of
Nature” [Feynman (1985)].
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theory as being more (or less) fundamental than another, but strictly speak-

ing “fundamental” has no comparative. If quantum mechanics is indeed

the fundamental theoretical framework of physics—and while there may be

doubts, nobody has the slightest idea what an alternative framework con-

sistent with the empirical data might look like—this kind of explanation is

ruled out.

The explanatory vacuum left by any fundamental theory is an embar-

rassment to those who like to imagine themselves “potentially omniscient,”

i.e., capable in principle of knowing the furniture of the universe and the

laws by which this is governed. Hence their attempts to reify mathematical

symbols and equations, to interpret them as representing physical entities

or describing physical processes. Such attempts have had some measure of

success in classical physics, but attempts to reify the quantum-mechanical

correlation laws are patently absurd. And when the classical correlation

laws are recognized as simplifications of the quantum-mechanical ones in

a particular asymptotic regime (the classical limit), it becomes clear that

even their reification was never more than a sleight of hand (Sec. 10.7).

There is also the question about the origin of the physical laws and of

their efficacy. Under the paradigm of manifestation this question becomes

tractable to a certain extent. If we grant UR the power to enter into spatial

relations with itself and thereby manifest a world, we should also grant it

the power to subject the spatial relations to specific laws.

21.5 How are “spooky actions at a distance” possible?

This leaves us with two questions. First, why do the laws of physics have the

particular form that they do? This question will be addressed in the next

chapter. Second, how are these laws possible? This is not the question of

“how Nature does it,” which has already been disposed of: what is capable

of manifesting a world is also capable of putting laws into effect. But the

quantum-mechanical correlations—especially those between the outcomes

of measurements performed in spacelike relation—have aspects that make

them seem outright impossible.

Consider again the three-particle state (13.17). By measuring the x com-

ponents or the y components of the spins of two particles, we can predict

with certainty the x component of the spin of the third particle. By mea-

suring the x component of one spin and the y component of another spin,

we can predict with certainty the y component of the third spin. And by
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measuring the z component of one spin, we can predict with certainty the

z components of the two other spins. How is this possible considering that

(1) these measurements do not reveal pre-existent values but create their

outcomes,

(2) the correlations between the outcomes are independent of the distance

between the particles,

(3) the correlations between the outcomes are independent of the relative

times of the measurements.

We tend to believe, as Einstein (1948) did, that “things claim an exis-

tence independent of one another” just in case they “lie in different parts

of space.” We therefore readily believe that the three particles in this ex-

periment lie in different parts of space. But what is space? If we think

of it as an expanse, then quantum mechanics does not permit us to think

of it as having parts (Sec. 18.7). Considered as an expanse, it offers no

ground on which the three particles could claim an existence independent

of one another. On the contrary, instead of separating things, space (qua

expanse) unites them by its lack of intrinsic multiplicity. If, on the other

hand, we look on space as the totality of spatial relations existing between

material objects, the question of spatial parts does not arise. Nor does a

relation offer a ground for claiming independence for its relata. Quite the

contrary. Given that the ultimate constituents of matter are identical in

the strong sense of numerical identity, every fundamental particle is UR,

and every spatial relation is a self-relation. Seen in this light, how could

things possibly “claim an existence independent of one another”? They can

not.2

2A number of parapsychologists [e.g., Radin (2006)] have claimed that parapsychologi-
cal phenomena can be explained in quantum-mechanical terms. Yet quantum mechanics
explains neither how its correlations work nor how they are possible in the first place. It
only tells us that they are possible (inasmuch as the observed correlations agree with the
predicted ones). All there is to the alleged quantum-mechanical “explanation” of para-
psychological phenomena is this: if the quantum-mechanical correlations are possible,
then the correlations observed by parapsychologists cannot be dismissed offhand.
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Chapter 22

Why the laws of physics are just so

22.1 The stability of matter

In Sec. 8.2 we described “ordinary” material objects as

• having spatial extent (they “occupy space”),

• being composed of a (large but) finite number of objects without spatial

extent (particles that do not “occupy space”),

• being stable (they neither explode nor collapse as soon as they are

created).

What does the existence of such objects entail? “Ordinary” objects occupy

as much space as they do because atoms and molecules occupy as much

space as they do. In Sec. 4.3 we considered a hydrogen atom and found

that it must satisfy the following conditions: its internal relative position r

and the corresponding momentum p must both be fuzzy, and the product

∆r∆p of the standard deviations of the respective radial components of

r and p must have a positive lower limit. Since there is no reason why

the internal relative position of the hydrogen atom should distinguish itself

in some essential way from other relative positions, we concluded that the

existence of “ordinary” objects requires that relative positions and their

corresponding momenta be fuzzy, and that the product of the standard

deviations of a relative position and its corresponding momentum should

have a positive lower limit.

The stability of bulk matter containing a large number N of atoms also

requires that the energy and the volume occupied by 2N atoms be twice

the energy and the volume occupied by N atoms. If one assumes that the

force between electrons and nuclei varies as 1/r2, this linear law has been

shown to hold provided that the Pauli exclusion principle (Sec. 14.5) holds.

257



November 24, 2010 10:17 World Scientific Book - 9in x 6in main

258 The World According to Quantum Mechanics

The original proof is due to Dyson and Lenard (1967/1968). A significant

simplification of this proof was found by Lieb and Thirring (1975).

Problem 22.1. (∗) The classical force between pointlike charges is inverse

proportional to the square of the distance between them.

Since only fermions obey the exclusion principle, the validity of this linear

law also requires that the constituents of “ordinary” matter—electrons and

nucleons or electrons and quarks—be fermions (Sec. 14.5). This in turn

requires that the constituents of “ordinary” matter have a half-integral

spin of at least 1/2 (Sec. 12.3). If electrons and nuclei were bosons, the

volume occupied by 2N atoms would decrease like −N 7/5, and matter

would collapse into a superdense state in which “the assembly of any two

macroscopic objects would release energy comparable to that of an atomic

bomb,” Dyson and Lenard wrote.

The stability of bulk matter further requires the existence of indepen-

dent upper bounds on the fine structure constant α = e2/~c and the product

Zα, where Z is the atomic number [Lieb (1976, 2005); Lieb and Seiringer

(2009)]. This means, in particular, that the number of protons in a nucleus

must have an upper limit.

22.2 Why quantum mechanics (summary)

The proper—mathematically rigorous and philosophically sound—way to

define and quantify a fuzzy observable is to assign nontrivial probabilities

to the possible outcomes of a measurement of this observable (Sec. 8.2).

The classical probability calculus cannot accommodate nontrivial prob-

abilities (Sec. 8.1). The most straightforward way—in fact, the all but

inevitable way—to make room for nontrivial probabilities is to upgrade

from a 0-dimensional point P to a 1-dimensional line L. Instead of repre-

senting a probability algorithm by a point in a phase space S, we represent

it by a 1-dimensional subspace of a vector space (more specifically, a Hilbert

space) V .1 And instead of representing elementary tests by subsets of S,

we represent them by the subspaces of V (Sec. 8.3). Because there exists

a one-to-one correspondence between subspaces and the linear operators

1In Secs. 5.7 and 8.4.1 we observed that the stability of free particles further requires
that V be a complex vector space. (Not all definitions of “Hilbert space” require that it
should contain complex vectors.)
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that project into them, we adopted as our first postulate that measurement

outcomes are represented by the projectors of a vector space.

Because the product of the respective standard deviations of a rela-

tive position and the corresponding momentum has a positive lower limit,

it is impossible to simultaneously measure both quantities with arbitrary

precision: the two quantities are incompatible. The formal definition of in-

compatibility, given in Sec. 8.5, led to our second postulate: the outcomes

of compatible elementary tests correspond to commuting projectors.

In Sec. 8.6 we considered two measurements, one with three possible

outcomes A, B, and C, and one with two possible outcomes A ∪ B and C.
We thus had that p(A) + p(B) + p(C) = 1 and that p(A ∪ B) + p(C) = 1.

Obvious though it may seem, it does not follow that p(C) in the former

equation equals p(C) in the latter. It was however possible to postulate

the equality of the two probabilities, and so we did—no need to make the

world stranger than it is. Hence our third postulate: If Â and B̂ are

orthogonal projectors, then the probability of the outcome represented by

Â + B̂ is the sum of the probabilities of the outcomes represented by Â

and B̂, respectively.

These three postulates are sufficient to prove the trace rule, accord-

ing to which the probability of obtaining the outcome represented by the

projector P̂ is given by p(P̂) = Tr(ŴP̂), where Ŵ is a unique operator

whose properties are listed in Secs. 8.8 and 8.10. The trace rule tells us

(i) that the probabilities of the possible outcomes of measurements are en-

coded in a density operator Ŵ and (ii) how they can be extracted from Ŵ.

In Sec. 8.11 we established how the density operator is determined by ac-

tual measurement outcomes, and in Sec. 8.12 we learned how probabilities

depend on the times of measurements.

In the last section of Chap. 8 we derived the two Rules that we pos-

tulated in the first section of Chap. 5. From there, Rule B led us to the

particle propagator (5.10),

〈rB , tB |rA, tA〉 =
∫

DC Z[C|rA, tA → rB , tB ] ,

where Z[C|rA, tA → rB , tB ] is some complex-valued functional of spacetime

paths from (rA, tA) to (rB , tB). For a free and stable particle this takes the

form (5.16),

Z[C|rA, tA → rB , tB ] = eibs[C|rA,tA→rB ,tB ],

where the real-valued functional s[C|rA, tA → rB , tB ] is the length of C as

defined by some spacetime geometry. To pin down this spacetime geometry,

we then turned to the special theory of relativity.
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22.3 Why special relativity (summary)

In Sec. 6.1 we learned why there is no such thing as an absolute position, an

absolute orientation, an absolute time, or absolute rest. This—the content

of the principle of relativity—took us straight to the Lorentz transforma-

tions in their general form (Sec. 6.2). In this form they contain a constantK

which (if nonzero) has the dimension of an inverse velocity squared. Since

the absolute value of K (if nonzero) depends on conventional units, we

were left with exactly three physically distinct possibilities: K > 0, K = 0,

and K < 0. The option K > 0 was ruled out in Sec. 6.4, and Sec. 6.8

made it clear that K = 0 can be valid only as an approximation to the

special-relativistic form of the Lorentz equations, which is characterized by

K < 0.

22.4 Why quantum mechanics (summary continued)

K < 0 gave us the wanted length functional (albeit measured in units of

time):

s[C] =

∫

C
ds =

∫

C

√

dt2 − (dx2 + dy2 + dz2)/c2 =

∫

C
dt
√

1− v2/c2 ,

where c =
√

−1/K is the speed of light (Sec. 6.6).

In Sec. 7.1 we learned that for a particle that is stable but not free, the

amplitude associated with an infinitesimal path segment has the form

Z(t, r, dt, dr) = e(i/~) dS(t,r,dt,dr).

(The division by ~ ensures that the action differential dS is measured in

its conventional units.) dS is homogeneous (of first degree) in the differ-

entials dt and dr (Eq. 7.7). The scope of possible effects on the motion

of a particle is thereby limited to such modifications of the action differ-

ential associated with a free particle, dS = −mc2ds, as preserve both the

homogeneity expressed by Eq. (7.7) and the invariance of dS as a 4-scalar

(Sec. 7.2). The most straightforward such modification consists in the addi-

tion to dS = −mc2ds of the scalar product of a 4-vector field ~A = (V,A) and

the path element d~r = (c dt, dr). How to get from here to the Schrödinger

equation was spelled out in Secs. 7.2–7.4.
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22.5 The classical or long-range forces

In Sec. 6.7 we followed Feynman’s suggestion to associate a clock with

every spacetime path contributing to the particle propagator (5.10). As the

particle travels along such a path, the clock ticks. Although this happens

in our imagination only, it reveals a deep connection between the quantum-

mechanical probability calculus and the metric properties of the world.

The rates at which particles tick not only lay the foundation for the world’s

metric properties but also make it possible to formulate ways of influencing

the behavior of particles.

The world’s metric properties are founded on the fact that the rates at

which free particles tick in their rest frames—essentially, their masses—are

constant. This makes it possible to introduce a global system of spacetime

units. While there may be no global inertial frame, there will be local ones,

and they will mesh as described by a pseudo-Riemannian spacetime geom-

etry. Contrariwise, if the masses of the electrons (or protons, or neutrons)

inside any given atom would depend on the spacetime paths along which

they arrived at their current location, the Pauli exclusion principle would

not hold, and an essential condition for the stability of matter would be

missing [Marzke and Wheeler (1964)].

The only way to influence the probability of finding at one spacetime

location a scalar particle last found at another location, is to modify the rate

at which it ticks as it travels along the paths connecting the two locations.

The number of ticks associated with an infinitesimal path segment defines a

Finsler geometry dS(dt, dr, t, r) [Antonelli et al. (1993); Rund (1969)]. This

can be influenced in two ways, and so, therefore, can the behavior of a scalar

particle: a species-specific way represented by the 4-vector field Ai, which

bends geodesics relative to local inertial frames, and a species-independent

way represented by the metric gik, which bends the geodesics of the pseudo-

Riemannian spacetime geometry: dS = m
√

gikdxidxk + qAidx
i.

Since the positions of the sources of Ai and gik are fuzzy, the components

of these fields cannot be sharp. We take this into account by summing over

paths in the corresponding configuration spacetimes. This calls for the

addition of terms that only contain the fields; these are determined by

constraints spelled out in Secs. 10.2 and 10.4.

A renormalizable quantum theory of gravity does not (yet) exist. Nor is

it clear why a quantum version of general relativity ought to be renormal-

izable, considering that such a theory would have an inbuilt cutoff. For if

the metric becomes fuzzy, so do the distances between spacetime locations.
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And if these become fuzzy, so do the spacetime locations themselves, inas-

much as they are defined by the distances between them (Sec. 10.4). On

scales on which the fuzziness of the metric becomes significant, the very

concept of “scale” appears to lose its meaning.

To arrive at QED, we still need the Dirac equation, and we need to

take account of the fuzziness of particle numbers, due to the fact that only

charges are conserved. To obtain the appropriate equation for a particle

with spin, we need to let the wave function have more than one component.

This equation will therefore be a matrix equation. The simplest version is

linear in the operators of energy and momentum. If we require in addition

that each component of ψ satisfy the Klein–Gordon equation, we find that

the lowest possible number of components is four, and that this number

yields the appropriate equation for a spin-1/2 fermion—the Dirac equation

(15.5). How the fuzziness of particle numbers can be taken into account is

described in Sec. 15.6.

The stability of matter rests on the stability of atoms, and without

the electromagnetic force atoms would not exist. The stability of matter

further rests on the validity of quantum mechanics, and quantum mechanics

presupposes not only value-indicating events but also persistent records of

such events (Chap. 19). The existence of such events and such records does

not seem possible without the relatively hospitable environment of a planet,

and without gravity planets would not exist.

If we further take into account the evolutionary nature of our world, we

have reason to expect that the requisite variety of chemical elements is not

present from the start, and we can point to the fact that without gravity

there would be no stars to synthesize elements beyond beryllium.2

22.6 The nuclear or short-range forces

Quantum mechanics presupposes measurement outcomes. It thus presup-

poses macroscopic objects, including objects that can perform the function

of a measurement apparatus. Yet it seems all but certain that the existence

of outcome-indicating devices requires a variety of chemical elements well

beyond the four—hydrogen, helium, and a sprinkling of lithium and beryl-

lium—that are known to have existed before the formation of stars. If so,

2“Evolutionary” is used here in a sense different from that in which the time-dependence
of a quantum state is frequently misconstrued. At a minimum, an evolutionary world
has a beginning and grows in complexity.
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QED, which is based on the gauge group U(1), and gravity are both neces-

sary parts of the laws governing UR’s spatial self-relations, but they are not

sufficient. Interactions of a different kind are needed to carry further the

nucleosynthesis that took place before stars were formed. (Nucleosynthesis

is the process of creating atomic nuclei from protons and neutrons.)

By hindsight we know that QCD (Sec. 15.9.4), based on the gauge group

SU(3), bears much of the responsibility for nucleosynthesis, both primordial

and inside stars. (The elements created in stellar nucleosynthesis range in

atomic numbers from six to at least ninety-eight, i.e., from carbon to at

least californium.) QCD is further responsible for the formation of the

first protons and neutrons, which are thought to have condensed from the

quark-gluon plasma that emerged from the Big Bang—the hot and dense

condition from which the Universe began to expand some 13–14 billion

years ago.

But if most of the chemical elements are created inside stars, how do

they get out to form planets? Sufficiently massive stars end their lives with

an explosion, as Type II supernovae, spewing the elements created in their

interiors into the interstellar medium—dust clouds that have been produced

by explosions of earlier generations of stars. New stars and eventually

planets condense from these clouds, sometimes triggered by shock waves

generated by supernova explosions. It took many stellar life cycles to build

up the variety and concentration of heavy elements that is found on Earth.

A Type II supernova occurs when the nuclear fusion reactions inside a

star are depleted to the point that they can no longer sustain the pressure

required to support the star against gravity. During the ensuing collapse,

electrons and protons are converted into neutrons and neutrinos. The cen-

tral core ends up either a neutron star or a black hole, while almost all of

the energy released by its collapse is carried away by prodigious quantities

of neutrinos, which blow off the star’s outer mantle. But if neutrinos are

crucial for the release into the interstellar medium of the products of stel-

lar nucleosynthesis, then so is the weak force, which is based on the gauge

group SU(2).

Supernova explosions not only release the products of stellar nucleosyn-

thesis but themselves contribute significantly to the synthesis of the heavier

elements. The weak force, for its part, not only is crucial to supernova ex-

plosions but also plays an essential part in stellar nucleosynthesis.

It is also clear why the “carriers” of the weak force need to have large

masses, and why a mathematical procedure like the Higgs mechanism
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(15.9.6) is needed to “create” them. The range of a force is characteristically

given by the Compton wavelengths of the particles mediating it. For a

particle of mass m this equals h/mc. If the masses of the W± and the

Z0 were too small, the weak force would cause the beta decay of neutrons

in the atomic nucleus through interactions with atomic electrons, as well

as the decay of atomic electrons into neutrinos through interactions with

nucleonic quarks. All matter would be unstable.

It thus appears safe to say that the well-tested physical theories are pre-

conditions of the possibility of objects that (i) have spatial extent, (ii) are

composed of a finite number of objects without spatial extent, and (iii) nei-

ther explode nor collapse as soon as they are created (Secs. 8.2 and 22.1).

In other words, the existence of such objects appears to require quantum

mechanics, special relativity, general relativity, and the standard model of

particle physics, at least as effective theories.3

22.7 Fine tuning

The standard model of particle physics has about twenty-six freely ad-

justable parameters. Certain combinations of these parameters appear to

be remarkably fine-tuned for life [Barrow and Tipler (1986); Gribbin and

Rees (1989); Davies (2007)]. As Stephen Hawking (1988) wrote, “The laws

of science, as we know them at present, contain many fundamental num-

bers. . . . The remarkable fact is that the values of these numbers seem to

have been very finely adjusted to make possible the development of life.”

Example 1 : Supernova explosions only occur if a certain numerical rela-

tion involving the dimensionless coupling constants of the weak and gravita-

tional interactions (αw and αg) and the proton-electron mass ratio mp/me

are approximately satisfied. If αw were too large, the neutrinos released

by the collapse of the core of a star could not reach the stellar envelope

before losing most of their energy. And if αw were too small, the neutrinos

would escape with most of their energy. In either case the star would fail

to explode.

Example 2 : Stars rely on two mechanisms for transporting energy from

their cores to their surfaces: radiation and convection. Astronomical ob-

servations indicate that only stars which are at least partially convective

3An effective theory includes appropriate degrees of freedom to describe physical phe-
nomena occurring above a given length scale, while ignoring substructure and degrees of
freedom that exist or may exist at shorter distances.
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have planets. On the other hand, only radiative stars explode. So stars

of both types are needed, and this calls for a delicate balance between the

dimensionless coupling constants of electromagnetism and gravity and the

proton-electron mass ratio. If αg were slightly greater, only radiative stars

would exist, and if αg were slightly smaller, only convective stars would

exist.

Example 3 : The synthesis of carbon is a two-step process. The first

step is the formation of a 8Be nucleus out of two 4He nuclei (alpha parti-

cles), the second the formation of a 12C nucleus out of the 8Be nucleus and

another 4He nucleus. The probability of this process would be extremely

small, were it not for two “coincidences”: the 8Be ground state has almost

exactly the energy of two alpha particles, and 8Be+ 4He has almost exactly

the energy of an excited state of 12C. In other words, the 8Be ground state

“resonates” with a system comprising two alpha particles, and the excited
12C state “resonates” with a systems comprising 8Be and 4He. The exis-

tence of the second resonance was predicted by Fred Hoyle before its actual

observation, based on the observed abundance of carbon in the Universe

and the necessity for it to be formed in stars. The energy at which this res-

onance occurs depends sensitively on the interplay between the strong and

the weak nuclear interactions. If the strong force were slightly stronger or

slightly weaker—by just 1% in either direction—then the binding energies

of the nuclei would be different, and the requisite resonance would not exist.

In that case, there would be no carbon or any heavier elements anywhere

in the Universe. “I do not believe,” Hoyle (1959) concluded, “that any

scientist who examined the evidence would fail to draw the inference that

the laws of nuclear physics have been deliberately designed with regard to

the consequences they produce inside the stars.”

It is self-evident that the features of the Universe impose constraints

on its laws. If, for example, life has evolved, and if general relativity and

the theories included in the Standard Model are valid, then the adjustable

parameters of these theories must be so constrained as to allow for the evo-

lution of life. This truism is one version of the (weak) anthropic principle.

What is nevertheless remarkable is the number of constraints that have

been uncovered and, in consequence, the extent to which these adjustable

parameters are fine-tuned for the existence of life in the Universe.

If, on the other hand, there are objects that (i) have spatial extent,

(ii) are composed of a finite number of objects without spatial extent,

and (iii) neither explode nor collapse as soon as they are created, then we

must have quantum mechanics, special relativity, general relativity, and the
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Standard Model—the latter at least as effective theories—and the ad-

justable parameters of these theories must be so constrained as to allow

for the existence of such objects. Quantum mechanics presupposes macro-

scopic objects, including objects that can function as outcome-indicating

devices, and it seems all but certain that the existence of such devices calls

for elements whose existence depends on stellar nucleosynthesis and super-

nova explosions. In other words, it calls for some of the same fine tuning

that has been shown to be necessary for life.
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Quanta and Vedanta

Why are objects that have spatial extent composed of finite numbers of

objects without spatial extent? And if there is any merit to the one-sentence

creation story told in Sec. 21.1, how does UR enter into spatial relations

with itself? As we shall see, these questions are closely related.

Science operates within a metaphysical framework that formulates ques-

tions and interprets answers. This metaphysical framework is not testable

by the methods of science. Where quantum mechanics is concerned, the

most that can be said is that it makes more sense when placed in the right

(or an adequate) framework than when placed in the wrong (or an inade-

quate) framework. The following appraisals appear to be clear indications

of the use of an inadequate metaphysical framework:

I think it is safe to say that no one understands quantum mechanics.
[Feynman (1967)]

[Quantum theory] makes absolutely no sense. [Penrose (1986)]

It is often stated that of all the theories proposed in this century, the
silliest is quantum theory. [Kaku (1995)]

Whereas the top-down framework put forward here (Sec. 21.3) takes quan-

tum theory’s verifiable probability assignments as its point of departure,

the standard, bottom-up approach leads to interpretations that contain as-

sumptions about what happens between measurements—assumptions that

by definition cannot be put to the test. The inadequacy of this approach

was demonstrated in Chaps. 16 and 17.

A top-down framework has other advantages: it can make better sense

of the reality of consciousness, it may be the only framework that can

adequately deal with the reality of quality and value, and it affords deeper

insights into the nature of evolution.

267
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23.1 The central affirmation

For the remainder of this text I shall take my cue from a more than

millennium-long philosophic tradition known as Vedanta, which is founded

on a group of Indian scriptures, the Upanishads [Phillips (1995); Sri Au-

robindo (2001, 2003, 2005)]. The central affirmation of this tradition is

that there is an Ultimate Reality, and that this relates to the world in a

threefold manner: it is the substance that constitutes the world, it is a

consciousness that contains the wolrd in its totality, and it is (subjective

speaking) an infinite delight or bliss and (objectively speaking) an infinite

quality or value that expresses and experiences itself in the world.

Two important observations can already be made at this point. Within

a bottom-up framework of thought, what ultimately exists is a multitude of

entities (atoms, fundamental particles, spacetime points, you name them)

without intrinsic quality or value. In many traditions this multiplicity is

fittingly referred to as “dust.” In such a framework it is obviously hard to

give a non-reductive account of quality and value. In a top-down framework

of the Vedantic kind, on the other hand, quality and value have their roots

in the very heart of reality.

The second observation is that the substance that constitutes the world

and the consciousness that contains the world are one. UR is one, but the

world exists both by it and for it. When we think of the world as existing by

it, we think of it as a substance; when we think of the world as existing for

it, we think of it as a consciousness. This identity does not mean that the

consciousness we are familiar with is identical with any material structure

or function. What it means is that the consciousness we are familiar with

has its roots in that other consciousness. If this is one with the substance

that constitutes the world—which, remember, is what every fundamental

particle intrinsically is—then we have a fighting chance of understanding

how anything material could be conscious (that is, how it could possess

the private, first-person, subjective aspect of consciousness). Otherwise we

don’t.1

1“Nobody has the slightest idea how anything material could be conscious. Nobody
even knows what it would be like to have the slightest idea about how anything material
could be conscious. So much for the philosophy of consciousness” [Fodor (1992)]. Nothing
much has changed since this was written.
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23.2 The poises of creative consciousness

There exist a series of poises of relation between the consciousness that

contains the world and the world contained in it.

The original poise features a single conscious self, which is coextensive

with the world. Since in this poise the subject is wherever its objects are,

no distances exist between the seer and the seen. There is an expanse of

some kind—otherwise there would be no world—but this has neither the

quality of space nor that of time.

In a secondary poise, consciousness bifurcates: the self distantiates itself

from the content. This allows consciousness to apprehend its content from

a location within its content, perspectively, and to do this many times,

thereby taking on the aspect of a multitude of localized selves. It is here,

in this poise, that the three dimensions of space—viewer-centered depth

and lateral extent—come into being, for objects are no longer seen from

within, by identity with the all-constituting substance, but from outside,

as presenting their surfaces.

It is here that consciousness becomes distinct from substance. For

whereas in the primary poise the world’s properties exist indistinguishably

as determinations of a single substance and as content of a single con-

sciousness, the properties of a conscious individual exist distinguishably as

determinations of this particular individual (qua substance) and as content

of many another individual (qua consciousness).

A third poise arises if the multiple concentration of consciousness, which

has created the multitude of conscious selves, becomes exclusive. We all

know first-hand a state of exclusive concentration, in which awareness is

focused on a single object or task, while other goings-on are registered, or

other tasks attended to, subconsciously, if at all. It is by a similar—albeit

not as easily reversible—concentration that consciousness loses sight, in

each individual self, of its identity with the other selves and with the single

self of the primary poise.

Various degrees of exclusiveness are possible. A characterization of the

main degrees can be obtained by thinking of the creative process—the tran-

sition from infinite quality to revealing form—as involving a couple of in-

termediate stages:

Infinite Quality→ Expressive Idea→ Executive Force→ Revealing Form

When consciousness loses sight, in the individual self, of its identity with

the single self of the primary poise, it also loses sight of its oneness with
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the infinite quality/delight at the heart of existence. It then becomes the

center of a quantitative and finite action that is no longer aware of its

original purpose, which is to develop infinite quality into expressive ideas.

Whatever infinite quality is still expressed, is now received subliminally,

unbeknown to the individual.

If, by a further deepening of the concentration of consciousness, this

action is also excluded, we arrive at a world whose individuals execute ex-

pressive ideas unconsciously.2 And if the exclusive concentration is carried

to its ultimate extreme, then even the executive force that was active in

the individual falls dormant. Because this is instrumental in creating and

maintaining individual forms, what remains is a multitude of formless indi-

viduals. The stage for UR’s adventure of evolution has been set. Welcome

to the physical world!

This, then, could be the reason why objects that have spatial extent are

composed of (finite numbers) of objects without spatial extent.

In a sense, evolution is the reverse of the sequence of essentially psycho-

logically processes by which UR enters into spatial relations with itself and

ends up a discrete multitude of formless relata. Life (individuals capable of

executing ideas without being conscious of them) evolves first, then mind

(conscious individuals unaware of the single self and the infinite quality at

the heart of existence), and so will the higher poises of relation between con-

sciousness and the world, eventually. There is however this difference: the

evolution of life does not transform formless entities back into individuals

capable of executing expressive ideas; instead it proceeds by aggregation,

manifesting forms as sets of spatial relations between formless entities, and

manifesting qualities with the help of forms. More generally, it proceeds by

an ascent to a higher poise of relation and a partial but increasingly com-

prehensive integration of the constituents of the lower poise [Sri Aurobindo

(2005), Bk. 2, Chap. 18].

2Think of the angiosperms (flowering plants) as examples, and don’t let yourself be
bamboozled into thinking that the beauty of a flower is but a device that serves to
ensure the survival of a species. While in a bottom-up framework of thought, it is
natural to end up by saying that qualities are “nothing but” quantities, in a top-down
framework that has infinite quality at its core, quantities are “nothing but” means of
manifesting qualities.
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Solutions to selected problems

Problem 1.2 (Sally Clark). The fatally wrong assumption was that two

sudden infant deaths in the same family are independent events. What the

“expert” ignored was that there are factors—genetic, environmental, etc.—

that may increase the probability of a sudden infant death. The first sudden

infant death signals that such a factor is probably present. The occurrence

of a second sudden infant death in the same family therefore has a higher

probability, so the product rule for independent events cannot be applied.

Problem 1.3 (Monty Hall). Let D be the door originally chosen by the

player, let H be the door opened by the host (revealing a goat), and let

R be the remaining door. Before the host opens H , the probability that

the Grand Price is behind D is 1/3, and the probability p(D) that the

Grand Price is not behind D is 2/3. Neither probability is affected by the

host’s opening H . What is affected is p(H), which drops from 1/3 to 0,

and p(R), which jumps from 1/3 to 2/3, now equaling p(D). Accepting the

host’s offer to switch doors therefore doubles the player’s chances to win

the Grand Price.

Problem 1.4. To solve the previous problem, we did not have to invoke

frequencies in order to conclude that switching doors doubles the proba-

bility of winning. Hence the correct answer is (i): winning after switching

doors happens more often because it is more likely.

Problem 1.5. The answer depends on the rarity of the disease. Suppose

that one person in 10,000 has it. This means that if a million people are

tested, most probably there will be 99 true positives (99% of 100 people)

and one false negative (1% of 100), and there will be 989,901 true negatives

(99% of 999,900 people) and 9,999 false positives (1% of 999,900). The

271
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probability that a randomly picked person who tests positive actually has

the disease is therefore less than 1%: the number of true positives divided

by the number of all positives: 99/(9999+ 99) ≈ 0.0098.

Problem 1.6. The expected value is

12∑

k=2

p(k) k =
1
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18
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1

12
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The squared deviations from the mean are 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25,

respectively. Their mean is

1
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6
,

and the root of this is
√

35/6 = 2.41523.

Problem 3.1. Hint: imagine (i) three vectors ax, ay , az parallel to the x,

y, and z axis, respectively, such that ax + ay + az = a and (ii) another

three vectors bx,by,bz parallel to the x, y, and z axis, respectively, such

that bx + by + bz = b.

Problem 3.2. Since a·b is a scalar, we can choose a convenient coordinate

system to calculate it. In a coordinate system in which a = (a, 0, 0) we have

a · b = abx with bx = b cos θ.

Problem 3.4. Hint: calculate the scalar product of a× b with a and b.

Problem 3.6. Hint: use a coordinate system in which a = (a, 0, 0) and

b = (b cos θ, b sin θ, 0).

Problem 3.8.

lim
∆x→0

[2(x+∆x)2 − 3(x+∆x) + 4]− [2x2 − 3x+ 4]

∆x
= 2x− 3.

Problem 3.9. Where f ′′(x) > 0, the slope of f(x) increases, and the graph

of f(x) curves upwards. Where f ′′(x) < 0, the slope of f(x) decreases, and

the graph of f(x) curves downwards. If at the same time f ′(x) = 0, we have

either a local maximum (if f ′′(x) < 0) or a local minimum (if f ′′(x) > 0).

Problem 3.11. Hint: apply the product rule (3.13) twice.
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Problem 3.13. Hint: use the product rule (3.13) to calculate (xnx−n)′.

Problem 3.14. Hint: use the product rule to calculate the derivative of

(x1/m)m.

Problem 3.18.

exp(a+ b) = 1 + (a+ b) +
(a+ b)2

2!
+

(a+ b)3

3!
+ · · ·

exp(a) exp(a) =

[

1 + a+
a2

2!
+
a3

3!
+ · · ·

] [

1 + b+
b2

2!
+
b3

3!
+ · · ·

]

= (1) + (a+ b) +

(
b2

2!
+ ab+

a2

2!

)

+

(
b3

3!
+
ab2

2!
+
a2b

2!
+
a3

3!

)

+ · · ·

In the last line we have grouped terms of the same order and placed them

in ascending order. (The order of a term is the sum of the powers of a

and b.)

Problem 3.19.

e =

∞∑

n=0

1

n!
= 1 + 1 +

1

2
+

1

6
+ · · · = 2.718281828459 . . .

Problem 3.22. Hint: differentiate eln f(x).

Problem 3.23. Hint: wherever cos(x) is positive, its slope decreases as

x increases (that is, its graph curves downward), and wherever cos(x) is

negative, its slope increases as x increases (that is, its graph curves upward).

Problem 3.26. The antiderivative of x2 is x3/3. The value of the integral

is therefore 23/3− 13/3 = 7/3 .

Problem 3.27. The antiderivative of 1/r2 is −1/r. The value of the inte-

gral is therefore −1/∞+ 1/r = 1/r.

Problem 3.31. Hint: recall the Taylor series for cos(x) and sin(x).

Problem 3.32. Real part: cos(π/4) = 1/
√

2 ; imaginary part: sin(π/4) =

1/
√

2 .

Problem 3.33. The first equation is equivalent to x2 = eiπ/2. We need to

find all angles that, when doubled, equal π/2 . These are π/4 and π/4 + π.

The second equation is equivalent to x3 = eiπ . We need to find all angles

that, when tripled, equal π. These are π/3, π/3+(2π)/3, and π/3+(4π)/3.
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Problem 3.35. eiπ + 1 = 0.

Problem 5.1. Hint: use |z|2 = z z∗ and remember Problem 3.34.

Problem 6.3. Hint: make use of Eq. (6.32).

Problem 6.7. Use tanα = sinα/ cosα, multiply numerators and denom-

inators by cosα, and remember that cos2 α+ sin2 α = 1.

Problem 6.9. dx = c dt implies dx′ = c dt′.

Problem 8.7. Hint: make use of the orthonormality relations (8.9).

Problem 8.23. Hint: show with the help of the spectral decomposition

that α2
i = αi.

Problem 8.25. Hint: show with the help of Eq. (8.33) that α2
k < αk.

Problem 8.26. Hint: Tr(Ŵ) = 1.

Problem 8.28. Hint: make use of Eq. (8.40).

Problem 8.29. Owing to the invariance of the scalar product, we have

that 〈Ûv|Ûv〉 = 〈v|v〉. If |v〉 is an eigenvector of Û with eigenvalue λ, then

λ∗λ〈v|v〉 = 〈v|v〉.

Problem 8.30. |u〉 = Û†Û|u〉 = Û†λ|u〉 implies Û†|u〉 = λ−1|u〉.

Problem 8.31. 0 = 〈u1|Ûu2〉 − 〈Û†u1|u2〉 = (λ2 − λ1)〈u1|u2〉 .

Problem 10.1. Hint: the integral
∫

C df only depends on the values of f

at the endpoints of C (Problem 9.4).

Problem 10.2. Hint: df = (∂f/∂t) dt+ (∂f/∂r) · dr.

Problem 10.4.

dS

dt
= −mc2

√

1− v2

c2
− qV +

q

c
A · v

Problem 10.8. Hint: draw a spacetime diagram.

Problem 10.9. Hint: remember the antisymmetry of Fik .

Problem 11.3. Hint: calculate [x̂, p̂ ]ψ(x).
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Problem 11.5. Hint: consider the action of these operators on a wave

function.

Problem 11.6. Hint: make use of Problem 11.4.

Problem 12.1. Hint: apply the identity operator |z+〉〈z+| + |z−〉〈z−| to
|z′′+〉 .

Problem 12.4. 〈i|Â†|k〉 = 〈Âi|k〉 = 〈k|Â|i〉∗ = A∗
ki.

Problem 12.5. Hint: the respective matrix representations of |1〉 and |2〉
are

(
1

0

)

and

(
0

1

)

.

Problem 12.6.
(
t′

x′

)

=

(
cosα sinα

− sinα cosα

)(
t

x

)

.

Problem 12.7.

〈i|Û†Û|k〉 =

N∑

j=1

〈i|Û†|j〉 〈j|Û|k〉 = 〈i|k〉 .

Problem 12.16. Hint: make use of Eqs. (12.28) and (12.29).

Problem 12.17. There are four possibilities whose total probability is

|〈z+|a〉|2 and four possibilities whose total probability is |〈z−|a〉|2. But

|〈z+|a〉|2 + |〈z−|a〉|2 = 〈a|z+〉〈z+|a〉+ 〈a|z−〉〈z−|a〉 = 〈a|a〉 = 1 .

Problems 13.6 and 13.7. Hint: make use of Eqs. (12.28–12.30).

Problem 13.13.

Â =

(
1 0

0 −1

)

, B̂ =

(
1/5 2

√
6/5

2
√

6/5 −1/5

)

.

Problem 14.2. BE dice: The probability of a first 6 is 1/6. The probabil-

ity of subsequently tossing another 6 is twice that of subsequently tossing

a different number. The (conditional) probability of a second 6 therefore

equals 2/7. Hence pBE(12) = (2/7)(1/6) = 1/21. In all there are six ways

of tossing equal numbers, each with a probability of 1/21, and there are

fifteen ways of tossing different numbers, whose probabilities are given by
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(1− 6/21)/15 = 1/21. Accordingly, pBE(11) = 1/21, pBE(10) = pBE(9) =

2/21, pBE(8) = pBE(7) = pBE(6) = 3/21, pBE(5) = pBE(4) = 2/21, and

pBE(3) = pBE(2) = 1/21.

FD dice: In all there are fifteen ways of tossing different numbers, each

with probability 1/15. Accordingly, pFD(12) = 0, pFD(11) = pFD(10) =

1/15, pFD(9) = pFD(8) = 2/15, pFD(7) = 3/15, pFD(6) = pFD(5) = 2/15,

pFD(4) = pFD(3) = 1/15, and pFD(2) = 0.

Problem 22.1. Hint: Use (∂/∂r) · E = 4πρ (Eq. 10.20) and Gauss’ law

(Eq. 9.37).
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Pavičić, M., Merlet, J.–P., McKay, B. and McGill, N.D. (2005). Journal of Physics

A 38, pp. 1577–1592.
Penrose, R. (1986). In R. Penrose and C.J. Isham (eds.), Quantum Concepts in

Space and Time (Clarendon Press), p. 139.
Penrose, R. (2005). The Road to Reality: A Complete Guide to the Laws of the

Universe (Knopf).
Peres, A. (1980). American Journal of Physics 48, pp. 931–932.
Peres, A. (1984). American Journal of Physics 52, pp. 644–650.
Peres, A. (1995). Quantum Theory: Concepts and Methods (Kluwer).
Petersen, A. (1968). Quantum Physics and the Philosophical Tradition (MIT

Press).
Phillips, S. (1995). Classical Indian Metaphysics (Open Court).
Pitowsky, I. (1998). Journal of Mathematical Physics 39, pp. 218–228.
Primas, H. (2003). Mind and Matter 1 (1), pp. 81–119.
Radin, D. (2006). Entangled Minds: Extrasensory Experiences in a Quantum

Reality (Paraview).
Redhead, M. (1987). Incompleteness, Nonlocality and Realism (Clarendon).
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real part, 28

complex plane, 28
component

4-current, 127
4-potential, 134, 219, 261
4-vector, 106, 115, 116, 126
angular momentum, 146, 147
contravariant, 116
covariant, 116
electromagnetic field, 134
energy–momentum, 210
generic, 120
gradient, 107
Hamiltonian, 99
logical conjunction, 235
matrix, 156, 157, 208, 218
metric, 115, 116, 129, 130, 261
operator, 73, 98, 108, 145, 146, 160
radial, 35, 36, 257
spatial, 112
spin, 153, 154, 159–162, 164, 166,

167, 173, 175, 178, 179, 208,
238, 254, 255

spinor, 208, 219
temporal, 104, 112
tensor, 126
vector, 15, 16, 54, 55, 59, 60, 62,

70, 81, 82, 91, 98, 99, 106,
119, 124, 156, 208

wave function, 71, 166, 207, 208,
219, 262

component part, 249
component system, 172, 225, 227
composite system, 169, 171, 172, 174,

198, 225, 227
composition of velocities, 58
Compton wavelength, 264
configuration, 103
configuration space, 103, 234, 251
configuration spacetime, 103, 105,

124, 125, 129, 135, 209, 211, 261
connection coefficients, 116, 120
consciousness, 244, 267–270

creative, 269

exclusive concentration, 269
multiple concentration, 269
poises of, 269

conservation
angular momentum, 210
charge, 128, 129, 210
energy–momentum, 138, 210
particle number, 211

contextuality, 89, 174, 175, 177, 193,
230, 234

continuum normalization, 143
coordinate system/frame, 70, 128,

138, 210, 211
inertial, 54, 61, 66, 132, 145
polar, 26, 145–147
rectangular, 15, 146
wrong, 106

coordinates, 6, 22, 54, 59, 65, 68, 77,
129, 163

correlation, 7, 163, 168, 170–174, 181,
185, 200, 201, 231, 247, 253–255
deterministic, vi, 136, 138
EPR, 171
probabilistic, vi, 138

correlation laws, 168, 229, 253
classical, 254
quantum-mechanical, 254

cosmic background radiation, 197
cosmological constant, 131
counterfactual, 180–182, 236, 238

valid, 181
counterfactual reasoning, 179
coupling constants, 264, 265
covariant derivative, 120
creative process, 269
cross product, 16
cryptodeterminism, 174
curl (of vector field), 108
current, 126, 133

conserved, 210
density, 126
Noether, 211

curvature, 117, 135
test for, 117–119

curvature scalar, 130
curvature tensor, 130
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cutoff, 213, 214
inbuilt, 261

d3r, 19
d4x, 125
de Broglie, Louis, 12, 31
deep connection between quantum

mechanics and metric, 63, 261
degrees of freedom, 73, 77, 99, 103,

124, 234, 264
delight/bliss, 268
delta distribution, 99, 142
density

charge, 126, 211
current, 126
probability, 17, 34

density operator, 141, 259
properties, 91
reduced, 173, 174

derivative, 20
chain rule, 22
first, 19
partial, 22
second, 20

desperate measure, 9
detector, 44, 88, 237, 239, 243, 247

bright, 181
broadest sense, 238
dark, 181, 183
function, 238
perfect, 88
region monitored, 43, 46, 49, 88
sensitive region, 90, 238, 239

determinant, 218, 219
of the metric, 130

deviation
root mean square, 8
standard, 8, 34

dice
fair, 3
quantum, 200

Dieks, Dennis, vi, viii
difference quotient, 19
differential, 20
differential quotient, 20
differentiation

self-, 252
spatial, 228, 239, 240, 244
spatiotemporal, vii, 239, 245
temporal, 228, 239

diffraction grating, 47
dipole moment, 220
Dirac equation, 207, 208, 262

free, 217
Dirac spinor, 219
Dirac, P.A.M., 80
direct product, 171, 180, 225, 227
distance

fuzzy, 129, 261
distances

equal, 106
physically equivalent, 106

distinctions
between alternatives, 232
spatial, 237, 239, 252
spatiotemporal, 238
substantial, 252

divergence (of vector field), 110
dot product, 15
double dark detection, 183
durations

equal, 106
physically equivalent, 106

dust, 268
dynamics, 228

effective repulsion, 35, 36
eigenfunction, 147
eigenstate, 162, 221, 229
eigenstate–eigenvalue link, 229, 239
eigenvalue, 92–94, 96–98, 141, 147,

159, 162, 176, 180, 221, 225, 229
eigenvector, 92, 97, 141, 159, 225
Einstein equation, 131
Einstein’s “greatest blunder”, 131
Einstein’s razor, viii
Einstein, Albert, 12, 116, 171, 255
Einstein, Podolsky, and Rosen, 171,

175
electro-optical shutters, 185
electromagnetic effects, 136
electron gun, 41
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electrostatic attraction, 35, 36
element of physical reality, 174, 179
elementary test, 77, 78

compatible, 86, 87, 90, 143, 259
incompatible, 86, 89

energy, 31, 105
ionization, 164
kinetic, 11, 107, 205

non-relativistic, 107, 205
relativistic, 205

negative, 206, 207
photon, 12
potential, 11, 32, 107, 205
quantization, 9, 38
rest, 63
total, 11, 32, 205

energy–momentum, 106, 137, 210, 213
conservation, 138, 210
local conservation, 132, 137
tensor, 132

ensemble
postselected, 190
preselected, 190

entanglement, 171, 172
equation of continuity, 129, 132, 210
Euler’s formula, 29
Euler–Lagrange equation, 208–210
evolution, 225, 227–229, 231, 232,

244, 250, 262, 265, 267, 270
adventure of, 270
paradigm of, 228
principle of, 228, 229, 231, 234
quantum state, vii
two modes of, vii, 232

exclusion principle, 162, 164, 199,
257, 258, 261

expansion of the universe
accelerating, 131

expected/expectation value, 34, 145
experiment

Elitzur–Vaidman, 139, 183
Englert, Scully, and Walther, 184
Greenberger, Horne, and Zeilinger,

177, 178, 254
scattering, 211, 247
three-hole, 192

two-slit, 41, 46, 132, 184, 233

factorial, 23
fail-safe strategy, 177, 178
fallacy of misplaced concreteness, 135
fermion, 162, 197, 199, 200, 208, 212,

258, 262
Feynman diagrams, 212, 215, 216
Feynman rules, 212
Feynman, Richard P., ix, 41, 138,

207, 261
field

continuous deformation, 210
electric, 70, 112, 114
electromagnetic, v, 113
fuzzy, 261
gauge, 221
magnetic, 70, 112

inhomogeneous, 160
spin-0, 221

fine tuning, 264, 266
Finsler geodesics, 113
Flatland, 117
fluffing out matter, 35
flux (of a vector field), 110
force

classical, 261
Coulomb, 11
electric, 112
electromagnetic, 71, 120, 262
electrostatic, 220
fictitious, 106
gravitational, 120
long-range, 261
Lorentz, 111, 112
magnetic, 112
nuclear, 262
physical concept, 112
primitive notion, 112
short-range, 262
strong, 219, 220, 265
weak, 221, 222, 263, 265

form
coming into being, 251
empirically accessible, 240
general sense, 251
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pointlike, 240
Fourier transform, 33, 39
frequency

angular, 9, 31, 167
precession, 167
radiation, 9
relative, 4, 5, 46, 191

function, 19, 20
cos, 24
exp, 23
sin, 25
well-behaved, 19, 23, 124

functional, 48, 259, 260
fuzziness, 35, 79, 94, 135, 148, 212

counterfactual, 244, 253
defining and quantifying, 79, 258
measure of, 35, 37, 252

fuzziness (“uncertainty”) relation,
257, 259

fuzzy causes, 124
fuzzy effects, 124
fuzzy sources, 261

game, 177
gauge fixing, 222
gauge potential, 219
Gauss’s law, 111, 127, 129
Gauss’s theorem, 110
Geiger, Hans, 9
geodesic, 102, 103, 112, 114, 116,

118–120, 135, 261
geodesic equation, 105, 111, 116

for flat spacetime, 104
geometry, 104, 112, 120

defined by V and A, 114
differential, 70, 115, 116, 125, 135
Finsler, 102, 261
particle-specific, 120
pseudo-Riemannian, 116, 261
spacetime, 102, 115, 120, 121, 259,

261
universal, 120

Gerlach, Walther, 153
Gleason’s theorem, 90
glowing hot object, 9
gluon, 220

goblins, 124
going back in time, 60, 62
gold foil, 10
gradient (of vector field), 107, 160
grating, 235
gravitational constant, 130
gravitational effects, v, 135, 136
gravity, 120, 262, 263
Greenberger, Horne, and Zeilinger,

177, 178
Groningen, 141
group, 217

Abelian, 218
gauge, 219
generators, 219
non-Abelian, 218
representation, 218
rotation, 218

Hall, Monty, 7
Hamiltonian, 98, 144–146, 162
Hanbury Brown and Twiss, 201, 203
handedness, 220, 221
Hawking, Stephen W., 264
Heisenberg equation, 144
Heisenberg, Werner, 31, 35
Higgs boson, 222
Higgs mechanism, 221, 222, 263
Hilbert space, 82, 136, 225–227, 258
homogeneity (of first degree), 70, 260
Hoyle, Fred, 265
Hubble, Edwin, 131
hydrogen, 10, 12, 35, 147, 257, 262

“allowed” energies, 12, 147
ground state, 12, 35, 79
line spectrum, 10, 12

hyperplane, 49
hypersurface, 117

of constant time, 137

identity
numerical, 250–252, 255
of indiscernibles, 250
qualitative, 250

identity operator, 91, 145, 173
illegitimate duplication of time, 62
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imaginary axis, 28
in phase, 187
independent events, 6, 7
independent reality, 243
indices

contravariant, 117
covariant, 117
identical, 117
lowering, 116, 117
raising, 116, 117
spacetime, 116
subscript, 116
superscript, 115, 116

infinitely small, 20
infinitesimal, 20
infinitesimal path (segment), 50, 59,

62, 63, 69, 71, 101, 104, 119, 125,
260, 261

infinitesimal translation, 144
influencing the past, 187
information “erasure”, 186
instant of time, 228
instruction set, 169, 170
instrumentalism, vii
integral, 25

definite, 17
Gaussian, 26
indefinite, 25

integrand, 26
integration by parts, 27, 127
intensity interferometer, 201
interaction, 171

“ordinary” physical, 231
electromagnetic, 212, 216, 217, 219
electroweak, 220
gravitational, 217, 264
nuclear, 216, 265
strong, 219
weak, 212, 216, 219, 222, 264

interference, 44
“destruction” of, 182
constructive, 45, 162
destructive, 45, 64, 162
fringes, 45, 186
maxima, 46
not a physical process, 45

pattern, 46, 47, 134, 186, 187, 234
complementary, 187

term, 45, 133
interferometer, 139, 181, 183, 201
interlocking interferometers, 181
internal line, 215
interpretational strategy, 231, 232,

235, 248
intersection (of subspaces), 85–87
invariance

gauge, 123, 126, 134, 217, 221
Lorentz, 59, 68, 70, 260

invariance under
SU(2), 219, 221
U(1)/phase transformations, 83,

210, 217, 221
continuous transformations, 210
spacetime translations, 132, 210
unitary transformations, 96

invariant speed, 61, 136, 137
finite, 61
infinite, 61

ionization energy, 12, 164, 165
isotropy, 146, 157, 162

jointly exhaustive, 3, 5–7, 94

kinematics, 228
Klein–Gordon equation, 205, 207,

208, 211, 262
free, 206, 209

Kochen–Specker theorem, 174, 179
Kronecker, Leopold, 27

Lagrange density, 125
Lagrange function, 125
Lagrangian, 125, 126, 209–212, 215,

217, 219
Dirac, 218, 221
electroweak, 220–222
interaction term, 212
QED, 217, 219
renormalizable, 215

language dependence, 60, 66
language independence, 61
lepton, vi, 220–222, 240
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left-handed, 220, 221
right-handed, 220, 221

Let’s Make a Deal, 7
lightlike, 63, 137
likelihood, 3
limit, 5, 7, 18, 20
line (ray), 80, 93, 258

orthogonal, 87, 88
line integral, 108
linear combination, 54, 81, 83, 206
linear independence, 81
local action, v, 134, 135, 184

unintelligibility, 135
locally flat, 53
locally straight, 53
loop integral, 108
Lorentz contraction, 67, 130
Lorentz transformation, 65, 260

actual form, 62
general form, 54

Mach–Zehnder interferometer, 139
machine

curvature tensor, 131
derivative, 19
differential operator, 20, 73
function, 19
functional, 48
metric, 43, 115
operator, 20
projector, 82
scalar product, 81

macroscopic, viii
macroworld, 243–245, 247, 253

defined, 244
magnetic field, 113, 133, 166, 167, 208

gradient, 153
homogeneous, 166

magnetic flux, 113
manifestation, 251–254
Marsden, Ernest, 9
mass, 46, 63, 64, 212, 214

physical, 215, 216
mass ratio, 264, 265
mass term, 221, 222
material object

“ordinary”, 79, 257
matrix, 157, 159, 180

1× 1, 218
2× 2, 156, 218, 219
3× 3, 219
equation, 207, 262
N×N, 157
special unitary, 218

matrix multiplication, 157
matrix notation, 156
matter, 131

“fluffing out”, 35
coming into being, 251
stability, 79, 162, 257, 258, 261, 262

Mattuck, Richard D., 215
Maxwell’s equations, 126, 128, 131,

133
Meadow, Sir Roy, 6
mean (value), 8
meaning of “both”, 235
measurement, v, vii, 3, 7, 8, 34, 38,

41, 48, 77–79, 88–91, 94, 95, 101,
136, 138, 141, 143, 148, 153, 154,
161, 162, 164, 166, 167, 169–171,
174, 175, 179, 185, 186, 189–193,
211, 221, 225–232, 236, 244, 254,
255, 258, 259, 262, 267
compatible, 143, 160
complete, 91, 199
definition of, 236
direct, 189
energy, 166
incompatible, 160
initial, 42
intermediate, 41, 49, 100, 154, 161,

184, 185, 193
joint, 6
momentum, 34
position, 34, 148, 247, 249
repeatable, 94, 95, 153, 161
successful, 88
time of, 227, 229, 231, 232, 255, 259
unperformed, 79, 235, 236
verifiable, 95

measurement apparatus, 171, 262
function, 238, 239
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measurement problem, vii, 231
Mermin, N. David, 136, 169
meson, 172, 220
metric, 43, 63, 115, 135, 261

fuzzy, 129, 261, 262
non-Euclidean, 115
pseudo-Riemannian, 115

microwave cavity, 185
microworld, 247, 253
misplaced concreteness

fallacy of, 135
mixture/mixed state, 93, 94
molecule, 173, 175, 251
momentum, 31, 46, 106, 145

fuzzy, 35, 36, 43, 79, 257
kinetic, 107, 205

non-relativistic, 107, 205
relativistic, 205

photon, 12
potential, 73, 107, 205
total, 205

momentum representation, 142, 144
momentum scale, 215, 216
monistic ontology, 249
Moon, v, 244
multiplying

complex numbers, 28
matrices, 157
probabilities, 5

muon, 220
mutually exclusive, 3, 5–7, 94

naive breed, 134
natural logarithm, 24
neutrino, 220, 263, 264
neutron, 163, 220, 263, 264
Newton’s law of gravity, 131
Newton, Isaac, v, 136
Newtonian mechanics, 58, 61
Noether’s theorem, 210
non-denumerable set, 124
noncontextuality, 88, 89, 175
not even wrong, vii, 226
nucleosynthesis, 263, 266
null (lightlike), 63
numbers

complex, 27, 82
imaginary, 28
integers, 27
natural, 27
rational, 27
real, 27

numerical methods, 164

object
“ordinary”, 79
formless, 240, 270
macroscopic, 197, 243, 244, 258,

262, 266
pointlike, 240
stable, vi, 79

observable, 8, 73, 141, 142, 144, 145,
160, 170, 173, 175–177, 180, 191,
225–227, 229, 230, 239, 243
compatible, 143, 175
conserved, 145
continuous, 142
discrete, 143
fuzzy, 79, 236, 258
incompatible, 259

observable behavior, 70
observer, 244
operator, 20

adjoint, 92
angular momentum, 145, 146
commuting, 84, 160
density, 90, 93–95, 141, 174, 259
differential, 20, 73
energy, 73, 144, 145, 205, 208, 262
Hamilton, 98
idempotent, 93
identity, 83, 91, 100, 145, 173
kinetic energy, 73
linear, 91, 156
momentum, 73, 142, 144, 145, 205,

208, 262
non-commuting, 180
position, 142
positive, 91
self-adjoint, 91–93, 95, 97, 98, 141,

143–145, 159, 175, 225, 227
unitary, 96, 145
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orbital, 148, 164, 165
ordinary matter, 155
orthocomplement, 85
orthogonal, 153, 198
orthonormal basis, 81
ostentation, 241
other things being equal, 181
out of phase, 187

pair annihilation, 207, 212
pair creation, 207, 212
parallel transport, 118, 119
parallelogram rule, 15
parapsychology, 255
particle, 34, 38, 43, 46, 49, 62–64, 70,

71, 73, 79, 88, 89, 99, 101, 102, 106,
112–116, 124, 128, 138, 158, 159,
162, 166, 169, 170, 172–175, 178,
179, 190, 192, 193, 196, 197,
206–208, 216, 221, 238, 247, 248,
260–262, 264
alpha, 10, 265
classical, 38, 102, 112
formless, 241, 251, 270
freely moving, 31, 50, 51, 63, 64,

69, 71, 82, 101, 115, 259
fundamental, 220, 240, 250, 251,

255, 268
indistinguishable, 197
left-handed, 221
pointlike, 240
relativistic, 205
right-handed, 221
scalar, 71, 101, 115, 261
stable, 50, 51, 63, 69, 70, 102, 259,

260
virtual, 215

particle generations, 220
particle number

fuzzy, 211, 262
path integral, 47, 48, 51, 71, 101, 102,

129, 206, 211
Pauli equation, 166, 208
Pauli spin matrices, 159, 208
Pauli, Wolfgang, vii, 162, 199, 226
Peres, Asher, 227

periodic table, 164, 165
perturbation series, 216
phase factor, 30
phase shift, 139, 192
phase space, 77, 78, 80, 93, 94, 136,

226, 258
photodetector, 139, 185
photoelectric effect, 12
photomultiplier, 201
photon, 139–141, 185–189, 197,

201–203, 212, 222
energy of, 12
momentum of, 12
virtual, 216

photon beam, 139
photon detection rate, 201
photosensor, 186
physicists, viii, 129, 134, 141, 230, 252
pilot wave, 234
Planck constant, 9, 10, 63

reduced, 9
Planck’s formula, 9
Planck, Max, 9
planet, 262, 263, 265
pointer needle, 243
polynomial, 27

roots, 27
position

absolute, 53
classically predictable, 243
fuzzy, 35, 36, 61, 79, 148, 235, 236,

240, 241, 243, 252, 257
macroscopic, 244, 253
pointer, 244

position operator, 142
position representation, 142, 144, 145
positron, 181
postselection, 190, 191
postulate, 90, 143, 259

Bohr’s, 10
projection, 225
quantization, 10

potential
“scalar” (V ), 102
fuzzy, 124
vector (A), 102
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potential well, 38, 39
power series, 23
pre-agreed answers, 177
precession, 167
preselection, 190, 191
principle

exclusion, 162, 164, 199, 257, 258,
261

of complete spatiotemporal
differentiation, 228

of indifference, 3
of least action, 101, 104, 129
of local action, 135
of relativity, 54
weak anthropic, 265

probability
absolute, 229
conditional, 7, 229
epistemic, 4
ignorance, 4, 80
joint, 6, 7, 163
marginal, 7, 170, 173
nontrivial, 79, 80, 89, 94, 226, 227,

258
objective, 4
product rule, 6, 43
subjective, 4
sum rule, 5, 259
trivial, 79, 136, 226

probability algorithm, 154
classical, 80
quantum-mechanical, 136

probability assignment
counterfactual, 79, 236
time-symmetric, 190, 191, 193

probability distribution, 148
probability theory

Kolmogorov’s, 228
Rényi’s, 228

propagator, 42, 44, 47, 48, 51, 63–65,
71, 101, 103, 115, 124, 135, 206,
207, 212, 228, 259, 261
non-relativistic, 65
time-dependent, 48

proper time, 62, 63
property

Aristotle’s definition, 249
fuzzy, 79, 80
particle, 12, 234
pre-existent, 170, 189
wave, 12

proton, 163, 220, 263
pseudo-problem, 244
pseudo-question, vii, 232

QCD, 216, 217, 219, 220, 263
QED, 126, 212, 216–219, 262, 263
quadrilateral, 130
quality, 241

of spatial extension, 241
quality/value, 268
quantization

angular momentum, 10, 12, 31, 35
electromagnetic radiation, 12
energy, 9, 38

quantum fluctuations, 216
quantum mechanics, vi, viii, 3, 4, 28,

35, 63, 77, 79, 88, 94, 120, 139, 141,
167, 170, 179, 186, 191, 201, 215,
216, 229, 231, 232, 234, 236, 244,
249, 250, 252, 253, 255, 258,
260–262, 264–267
“heart of”, 41
“incomplete”, 171
axioms, 225, 227
core postulates, 90
fundamental theoretical framework

of physics, 254
mathematical formalism, 225, 226,

231
non-relativistic, 64
ontological implications, vii
relativistic, 205
standard axiomatizations, vii, 231
standard formulations, 231
theoretical formalism, 240, 243

quantum number, 147
angular momentum, 147
azimuthal, 147
magnetic, 147
orbital, 147
principal, 147, 164
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quantum physics, 9, 123, 138, 174,
226

quantum system, 167, 189, 226, 229,
239, 249

quantum theory, 171, 228, 243, 267
“new”, 31, 38
“old”, 9, 38
of gravity, 129, 261

quantum Zeno effect, 167
quark, vi, 155, 162, 219, 220, 222,

240, 258, 264
confinement, 220

quark-gluon plasma, 263

radians, 30
radiation

cosmic background, 197
electromagnetic, 9, 10, 12
quantization, 12

radiation formula, 12
radiation formula/law, 9
radiation spectrum, 9
ray, 80
real axis, 28
real line, 28
record of outcome, 244, 262
rectangular cuboid, 19
reference system/frame, 70, 128, 138,

210, 211
inertial, 54, 61, 66, 132, 145
polar, 26, 145–147
rectangular, 146
wrong, 106

regularization, 213
reification, vi, 135, 138, 216, 254
relationism, 241
relativity

general (theory of), 131, 261, 264,
265

principle of, 54, 260
special (theory of), 51, 53, 99, 125,

228, 259, 260, 264, 265
relevant facts, 80, 94
renormalizability, 126, 129, 222, 261
renormalizable Lagrangian, 215
renormalization, 212

resonance cavity, 185
retardation, 136
retrodiction, 190, 229
Ricci tensor, 130
Riemann curvature tensor, 130
Riemann integral, 48
Riemann, Bernhard, 115
right-hand rule, 17, 109
rms deviation, 8
Rohrlich, Fritz, 134
rotation, 60, 155–160, 162
Rule A, 44, 45, 100, 140, 184, 185,

191, 196, 232–234, 248
Rule B, 44–46, 134, 139, 154, 184,

186, 196, 232–235, 248, 259
Rules A and B, 41

derived, 100
stated, 41

running parameter, 215
Rutherford, Ernest, 9
Rydberg (Ry), 12

SAICE, viii, x
scalar, 16
scalar product, 16, 68, 81, 171
scale (concept of), 262
scattering

elastic, 195
of billiard balls, 195
of particles, 195
two-electron, 215

scattering amplitude, 211, 216, 222
electron–electron, 212, 213

Schrödinger equation, 32, 38, 71, 73,
134, 164, 166, 205
φ-independent, 147
complete, 205
free, 206

general solution, 33
time-independent, 39, 147

Schrödinger, Erwin, 31, 205
science, 267
science fair, 141
self-relation, 251, 255, 263
shell

15-inch, 10
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electron, 164
shutter, 185–187
simultaneity, v, 137

absolute, 61
in Newtonian mechanics, 61, 137
relative, 66

Sirius, 201
sleight of hand, v, 254
slope, 19
solenoid, 133
space

“parts of”, 240, 255
coming into being, 251, 269
contains forms, not matter, 241
expanse, 241
homogeneity, 106, 145
intrinsically undivided, 241
isotropy, 146, 157, 162
no inbuilt metric, 43
phenomenal, 241
totality of spatial relations, 241

space and time
difference between, 61
unit points on axes, 67

spacelike, 63, 101, 206, 254
spacetime, 48, 50, 53, 54, 64, 65,

67–69, 101, 119, 120, 125, 129, 213,
215
curved, 115–117, 119, 121
diagram, 49
flat, 104, 119, 210
geometry, 102, 115, 120, 121, 259
indices, 116
rotation, 217
stratification, 137, 228
translation, 132, 210

spacetime path, 49, 50, 59, 62, 64, 66,
67, 82, 104, 116, 124, 125, 206, 207,
259, 261
“length”, 50, 62
“length” functional, 51

spacetime plane, 60, 113, 114
span, 85
spatial distinctions, 237

contingent, 237
relative, 237

spatiality, 241
spatiotemporal relation (a special

kind), 137
spatiotemporal whole, 62
spectacular failures, 9, 79
spectral decomposition, 93, 97
spectral lines, 148
spectral theorem, 92, 93, 141
spectrum (of self-adjoint operator), 93
speed of light, 61, 121, 137, 206, 260
sphere, 43, 119
spin, 153, 155, 162, 166, 167

half-integral, 162
integral, 162
spin-0, 221, 222
spin-1, 222
spin-1/2, 153, 155, 158–160, 162,

166, 172–176, 178, 208, 221,
262

spin & statistics theorem, 162
spin matrices, 159
spin precession, 166, 167
spinor, 208
spontaneously broken symmetry, 222
spooky actions at a distance, 171, 254
square-integrable, 34, 38
stable equilibrium, 36
Standard Model, vi, 216, 219, 220,

240, 264–266
stars, 262, 263, 265

convective, 264
radiative, 265

state
bound, 147, 220, 251
classical, v, 77, 79
entangled, 172
excited, 184
ground, 12, 35, 61, 79, 185, 265
mixed, 93, 94
preparation, 154, 190
prepared, 191
pure, 93, 94, 161
quantum, vi, vii, 154, 211, 221,

227–229, 231, 232, 262
retroparation, 190
retropared, 191
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singlet, 172, 174, 175
spin, 153, 162, 164
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