
A. Hubler, G. Foster, K. Phelps, Managing chaos: Thinking out of the box, Complexity 
12, 10-13 (2007). 
 
 

Managing Chaos 
 

Alfred W. Hübler, Glenn C. Foster, and Kirstin C. Phelps 
 

Alfred Hubler and Glenn Foster are at Center for Complex Systems Research and with 
the Department of Physics at the University of Illinois at Urbana-Champaign, Urbana, 
IL, 61801, U.S.A. Kirstin Phelps is at the Illinois Leadership Center at the University of 
Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A. E-mail: 
hubler.alfred@gmail.com 

 
 

“Chaos is inevitable. In the sense that perturbation is evolutionary, it's also desirable. 

But managing it is essential. It's no use for any of us to hope that someone else will do it. 

Do you have your own personal strategies in place?” C. P. Brinkworth, 2006 [1] 

 

Chaos means that strategies go wildly astray. It is often associated with missed deadlines, 

understaffing, runaway costs, and similar situations generally considered negative. Under 

these circumstances “Chaos” describes a situation where the goals of a strategy are 

unachievable and therefore the outcomes become random, unpredictable and often 

undesirable. This is exemplified in a recent E-mail message by Bill Ford to all of Ford 

Motor’s employees saying: "The business model that sustained us for decades is no 

longer sufficient to sustain profitability." Geoffrey Colvin, senior editor at Fortune 

magazine, analyzes Ford’s problems in his article “Managing in Chaos” [2]. 

 

But what if the goals of a strategy are achievable, but a small deviation from the plan or 

regulation leads to very different outcomes? [3] This behavior is called deterministic 



chaos [4]. Without management, deterministic chaos can produce arbitrary outcomes, 

some may be very positive some may be very negative. For instance, the evolution of an 

organization is deterministic chaos, if it encourages thinking out of the box and 

implements these new ideas rapidly, such as Google’s “Chaos by design” strategy [5]. If 

the management does a good job in prioritizing ideas for implementation the overall 

outcome is positive. This appears to be a particularly good recipe for success at research 

facilities and educational institutions [6]. 

 

In the following we discuss the management of some very simple deterministic chaotic 

agents which are subject to a small amount of noise. The agents can be thought of as 

business units or other nonlinear dynamical systems. The chaotic agents are controlled by 

a control unit, which could be a manager or a computer algorithm. This is by no means a 

simulation of managing a real world social organization or business entity. Models where 

simple control units manage a set of simple deterministic chaotic agents may provide 

intuition or illustrate a paradigm for the management of entities which have realistic 

strategies, but where a small deviation from the plan or regulation leads to a very 

different outcome. Finally we discuss managing networks of deterministic chaotic agents. 

 

Predicting chaos is hard, controlling chaos is easy. More precisely, long term 

predictions of deterministic chaos are hard, since even very small amounts of noise can 

change the motion significantly. Short term predictions and even medium term 

predictions of chaos are not that difficult, since the motion is governed by a deterministic 

equation, plus some small noise [8]. In contrast, controlling the chaotic motion of an 



agent is often easy, both short term and long term. Just apply a control force which is 

equal to the difference between the next state of the agent and the target, and it will go to 

the target [8]. This requires predicting the next state, which is a short term prediction, and 

therefore possible for chaotic agents. This control algorithm would not work for a random 

motion, since random motion can not be predicted, not even for one time step. This chaos 

control algorithm was introduced by Hubler in 1989 [9] and since has been further 

developed and widely used [10, 11]. 

 

Fig. 1 shows open loop control of chaotic logistic map dynamics for three different 

targets [8]. Open loop control is not always stable, only if the target is in the convergent 

region of the state space [12]. In convergent region two neighboring states get even closer 

at the next time step [13]. The state space of a chaotic agent can be divided into two 

regions, the convergent region and the rest, the divergent region. The dashed area in Fig. 

1 is the convergent region. If the target is in the convergent region, then chaos control 

is stable.  

 

Even if the target dynamics is chaotic or random, the control is stable if the target 

dynamics is in the convergent region. Fig. 1c shows the conversion of an uncontrolled 

chaotic logistic map dynamics into a controlled chaotic logistic map dynamics. The 

control unit, and everyone who has access to the target dynamics, can make long term 

predictions of controlled chaos, whereas anyone else can only make short term 

predictions of controlled chaos. For the control unit, controlled chaos is predictable, and 

still has most of the benefits of chaos. Chaotic agents constantly explore the state- space 



and have high potential for improving their performance, in particular in evolving 

environments [14]. 

  

What would happen if a control unit tries to control a set of slightly different chaotic 

agents, with a single control force? If a control force is designed for an agent, and then 

applied to agents with different parameter values the control may or may not work. For 

simple systems, such as logistic map chaos with parameter value a=3.8, controlling chaos 

works as long as the difference between the agents is less than 25% . This means a 

control unit can control a set of chaotic agents with a single control force if the difference 

between the agents is less than 25%. However, if the diversity of the agents greater, the 

control fails. In this numerical example we use a chaotic target, which is a rather 

sophisticated control. If the target is simpler the control works for groups of agents with a 

larger diversity. 

 

Another interesting question is the control of simple agent networks, for instance the 

control of a chaotic leader-follower system. We consider the situation where the 

dynamics of a chaotic agent (leader) is imitated by a second agent (follower), and we 

assume there is some feedback from the follower to the leader.  The Henon map is a 

simple model for such a system. We study the dynamics a chaotic leader-follower 

network which is controlled by a control unit [15]. In this case the convergent region 

depends only on the state of the leader. Therefore a stable control of the leader-follower 

network can be easily achieved by controlling the leader. Fig. 2 shows the 

uncontrolled and controlled chaos in a leader-follower network. The state of the leader 



and the follower are plotted versus time. For the first 20 time steps there is no control, 

and the dynamics is Henon map chaos. Afterward a control force is applied, where the 

target dynamics is a chaotic logistic map dynamics inside the convergent region of the 

Henon map. The plot illustrates that the leader-follower system quickly approaches the 

target, and thus behaves like a chaotic logistic map. This controlled chaotic dynamics is 

predictable for the control unit, even for a long period of time. 

 

Long term prediction of uncontrolled chaos is virtually impossible in large networks of 

chaotic agents. However it appears to be possible to switch such networks to controlled 

chaos, which makes them predictable, without losing the benefits of chaotic systems. 

Even though the dynamics of social organizations are much more complicated than these 

simple chaotic models, it is conceivable that a similar approach can be used to predict and 

control them. 
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Figure 1. The state of a chaotic agent versus time [8]. The control starts at time step 20. 

The continuous line is the target. In plot (a) the target is inside the convergent region 

(gray area) and the control is stable. In plot (b), the target is outside the convergent 

region, and the control is unstable. In this case the dynamics does not get closer and 

closer to the target. In plot (c) the target is chaotic. Since the target is inside the 

convergent region, the control is stable, even if the target is chaotic. 

 
 
 



 
 

Figure 2. Controlling a chaotic leader-follower network [14]. This plot shows the state of 

the leader nx and the state of the follower ny  versus time step n. Before time step n=20 

the chaotic network is uncontrolled and hard to predict, after time step n=20 the chaotic 

network is controlled and predictable for the control unit. The red line is the chaotic 

target dynamics. In this computer simulation the chaotic network dynamics is very close 

to the target. 


